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Efficient ductwork is a critical component in the heating and cooling systems of mobile
homes, where space limitations pose unique challenges. In these compact living
environments, every square foot counts, and the installation of ductwork must be

meticulously planned to ensure both functionality and comfort without infringing on valuable
living space.

The design and installation of efficient ductwork in mobile homes require a nuanced
understanding of spatial constraints. Heating systems should be inspected before the winter
season begins hvac for mobile home water purification. Unlike traditional homes, mobile

homes often lack attics or basements where ducts can be easily hidden. This means that
HVAC systems must be integrated seamlessly into the existing structure. An effective

solution involves using smaller, more flexible ducts that can fit within narrow walls or under
floors without compromising airflow efficiency.

Space limitations also necessitate careful consideration of the layout and materials used in
duct construction. Lightweight materials such as aluminum are often preferred for their
durability and ease of installation in tight spaces. Additionally, precise calculations are

required to determine the optimal size and placement of ducts to minimize energy loss and
maximize air distribution throughout the home.

Moreover, efficient ductwork contributes significantly to energy conservation-a vital
consideration given that many mobile homes are occupied by individuals who may be
particularly sensitive to high utility costs. Poorly designed or leaky ducts can lead to

significant energy waste as conditioned air escapes before reaching its intended destination.
Therefore, ensuring airtight connections and proper insulation is paramount to maintaining

an energy-efficient system.

Furthermore, space-efficient ductwork enhances indoor air quality by facilitating adequate
ventilation. Properly installed ducts help prevent issues such as mold growth or poor air
circulation, which can arise from inadequate airflow in constrained spaces. By prioritizing

efficient design and installation practices, homeowners can enjoy a healthier living
environment while maximizing their available space.

In conclusion, addressing space limitations in mobile home duct installations demands
creativity and precision. By employing innovative solutions tailored to these unique

environments-such as utilizing flexible materials, optimizing layouts for reduced energy
consumption, and ensuring airtight installations-homeowners can achieve both comfort and

efficiency in their heating and cooling systems. Ultimately, the importance of efficient
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ductwork extends beyond mere practicality; it plays a crucial role in enhancing quality of life
by transforming limited spaces into comfortable havens through strategic planning and

execution.

Impact of HVAC system
installation on roof weight
distribution —
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Considerations for maintaining structural integrity during HVAC installation
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upgrading HVAC systems
Potential risks of improper weight distribution on mobile home roofs and
HVAC efficiency
Guidelines for professional assessment and installation to ensure balanced
weight distribution

In the realm of mobile home design, space is a precious commodity. The challenge lies in
creating a comfortable living environment within a compact area. One critical aspect of this
endeavor is planning for duct installation, which often presents significant space constraints.
Understanding these limitations and finding innovative solutions are essential for optimizing
both functionality and comfort.

Mobile homes are designed to be efficient and cost-effective, which means every square inch
must be meticulously planned and utilized. Unlike traditional homes with spacious basements
or attics that can accommodate extensive ductwork, mobile homes have limited room for such
installations. This constraint requires designers to think creatively about how to integrate
heating, ventilation, and air conditioning (HVAC) systems without compromising living space.

One common issue is the limited vertical space available in mobile homes. With lower ceilings
than conventional houses, there is less room to run ducts overhead without encroaching on
living areas. This limitation forces designers to explore alternative pathways for ducts, such as



utilizing the spaces beneath floors or within walls. However, even these options come with
their own challenges; floor cavities may already house plumbing or electrical wiring, leaving
minimal room for additional components.

Another factor complicating duct installation is the structural framework of mobile homes.
These structures are typically built on narrow chassis designed for transportability rather than
spaciousness. Consequently, finding room for bulky ductwork can be particularly challenging
without impacting the integrity or aesthetics of the home's interior.

To address these issues, designers often turn to innovative HVAC technologies that require
less space. For instance, mini-split systems provide heating and cooling directly into rooms
without relying on extensive duct networks. Such systems not only minimize space usage but
also offer energy efficiency-a crucial consideration given the insulation challenges inherent in
mobile home construction.

Furthermore, advancements in flexible duct materials have made it easier to navigate tight
spaces without sacrificing performance. These materials allow ducts to bend around obstacles
more easily than rigid counterparts, facilitating more efficient use of available space.

In conclusion, analyzing space limitations for duct installation in mobile home designs calls for
a blend of creativity and technological adaptation. By understanding common constraints such
as limited vertical clearance and structural considerations, designers can implement innovative
solutions that maintain comfort while preserving valuable living areas. As technology continues
to advance, we can expect even more sophisticated methods of integrating HVAC systems
into compact environments efficiently-ultimately enhancing the quality of life for those residing
in mobile homes.
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Considerations for maintaining
structural integrity during
HVAC installation

Analyzing space limitations for duct installation is a crucial aspect of designing an efficient and
functional HVAC system. The process involves carefully assessing the available space to
ensure that ducts can be installed without compromising the structural integrity or aesthetics of
a building. This task requires a blend of technical knowledge, creativity, and foresight.

When engineers and designers begin assessing available space for duct installation, they are
essentially embarking on a journey through the architectural nuances of the structure in
question. The first step in this process is to conduct a thorough survey of the building layout.
This includes identifying potential obstructions such as beams, columns, electrical wiring, and
plumbing systems that could interfere with duct placement.

One major consideration during this assessment is ensuring compliance with building codes
and regulations. These codes often dictate minimum clearances and accessibility
requirements for maintenance purposes. Neglecting these considerations can lead to costly
modifications later on or even non-compliance penalties.

https://s3.pl-waw.scw.cloud/corp-logistic/royalsupplyinc/mobilehomehvac/news/.html


In addition to regulatory concerns, the physical constraints posed by limited space require
innovative solutions. For example, in older buildings with narrow ceiling cavities or non-
standard floor plans, it may be necessary to employ custom ductwork designs or utilize flexible
ducts that can navigate around obstacles more easily than rigid types.

Moreover, the aesthetic impact of duct installation cannot be overlooked. Modern design
trends increasingly favor unobtrusive HVAC solutions that blend seamlessly into their
surroundings. This preference places additional pressure on designers to find creative ways to
conceal ductwork without sacrificing performance or accessibility.

Beyond physical obstructions and aesthetics, airflow dynamics also play a critical role in
analyzing space limitations for duct installation. Proper airflow ensures efficient heating and
cooling distribution throughout the building while minimizing energy consumption. Therefore,
understanding how air will move through various pathways helps in determining optimal
locations for vents and returns within constrained spaces.

Furthermore, collaboration between architects, engineers, contractors, and clients is essential
throughout this process. Open communication allows all parties involved to share insights
about possible challenges and brainstorm effective solutions collaboratively.

In conclusion, assessing available space for duct installation requires careful planning rooted
in technical expertise coupled with creative problem-solving skills aimed at overcoming spatial
limitations effectively while adhering strictly to regulations governing safety standards
applicable across different jurisdictions globally today! It ultimately leads not only towards
successful completion but also enhances overall functionality alongside visual appeal
simultaneously achieved through seamless integration into existing structures where practical
flexibility meets innovation head-on successfully resulting thereby delivering optimum results
consistently over time!





Strategies for evenly
distributing weight across the
roof when adding or upgrading
HVAC systems



In the realm of building design and construction, one of the perennial challenges is effectively
managing space limitations, particularly when it comes to installing ductwork. Duct installation
is a critical component of heating, ventilation, and air conditioning (HVAC) systems, ensuring
efficient airflow throughout a building. However, as buildings become more compact and
architectural designs more complex, finding innovative solutions to overcome these spatial
constraints has never been more crucial.

Analyzing space limitations for duct installation begins with understanding the intricacies of
modern architecture. In many contemporary structures, especially in urban environments
where square footage comes at a premium, every inch of space must be utilized judiciously.
Traditional approaches to duct installation often require large ceiling spaces or expansive wall
cavities-luxuries that are not always available. Therefore, engineers and architects must
collaborate closely to devise strategies that allow for effective HVAC performance without
compromising on design or functionality.

One innovative solution involves the use of flexible duct materials that can navigate through
tight spaces with relative ease. Unlike rigid ducts that demand straight paths and ample room
for installation, flexible ducts can bend around obstacles and fit into unconventional spaces.
This flexibility not only saves space but also reduces the need for additional fittings and
connectors that might otherwise occupy valuable room.

Another approach gaining traction is the integration of advanced computational tools during
the design phase. Building Information Modeling (BIM) software allows designers to create
detailed 3D models of a building's infrastructure before construction begins. By simulating
various scenarios for duct placement within these digital blueprints, potential conflicts with
other structural elements can be identified and resolved early in the planning process. This
preemptive strategy helps optimize available space and prevents costly modifications later on.

Additionally, advancements in smart technology have led to the development of more efficient
HVAC systems that require less extensive ductwork altogether. Zoned heating and cooling
systems, for instance, utilize smaller ducts by focusing on specific areas rather than
attempting to regulate temperature uniformly across an entire building. These systems not
only conserve space but also enhance energy efficiency by targeting climate control efforts
where they are most needed.



Furthermore, vertical duct solutions offer yet another avenue for overcoming spatial hurdles. In
high-rise buildings or multi-story structures where horizontal space is limited, running ducts
vertically between floors can maximize utility while minimizing horizontal spread. This
technique requires meticulous planning but can result in significant savings of horizontal floor
area.

Finally, collaboration between architects and mechanical engineers from project inception
ensures that both aesthetic aspirations and functional requirements are met without
compromise. Early discussions about potential spatial constraints lead to creative problem-
solving strategies tailored specifically to each project's unique needs.

In conclusion, analyzing space limitations for duct installation necessitates a multifaceted
approach combining technological innovation with creative engineering practices. By
embracing flexible materials, leveraging digital modeling tools like BIM software, adopting
smart HVAC technologies such as zoning systems or vertical installations-and fostering
collaborative partnerships among professionals-the industry continues evolving toward ever-
more-efficient solutions capable of meeting today's complex architectural demands head-on
while paving new pathways toward future advancements in sustainable building design
practices worldwide.

Potential risks of improper
weight distribution on mobile
home roofs and HVAC
efficiency

The impact of space constraints on HVAC performance and efficiency is a critical
consideration in the design and installation of duct systems. As buildings become more
complex and urban environments denser, the challenge of fitting HVAC systems into limited
spaces becomes increasingly pronounced. This issue not only affects the physical installation



but also has significant implications for system performance, energy efficiency, and overall
comfort.

Space limitations can lead to a variety of compromises in duct design that directly affect HVAC
system efficiency. Ideally, ducts should be sized appropriately to balance air distribution
effectively throughout a building. However, when space is restricted, designers might have to
reduce duct sizes or use longer runs with numerous bends and turns to fit them into
constrained areas. Such modifications can increase air resistance within the ducts, leading to
higher energy consumption as fans work harder to push air through these convoluted
pathways. Increased resistance also results in uneven air distribution, causing some areas to
be over-conditioned while others remain uncomfortable.

Moreover, inadequate space for ductwork can force the use of less efficient layouts or
materials. For example, flexible ducts may be employed instead of rigid ones due to their
adaptability in tight spaces. While flexible ducts are easier to install around obstacles, they
often have higher friction losses compared to smooth-walled counterparts. This further
exacerbates inefficiency and can contribute to noise issues due to increased turbulence within
the duct.

In addition to affecting airflow dynamics, space constraints can complicate maintenance and
repair efforts. Ducts that are tightly squeezed into ceilings or walls may be difficult to access
for cleaning or servicing leaks and damage. Poorly maintained ducts not only degrade HVAC
performance but also pose health risks by accumulating dust and allergens that circulate
through indoor spaces.

To mitigate these challenges, architects and engineers must collaborate closely during the
early stages of building design. Innovative solutions such as integrating structural elements
with HVAC components or employing advanced simulation tools for optimal routing can help
address space limitations without sacrificing system performance. Additionally, exploring
alternative technologies like mini-split systems or variable refrigerant flow (VRF) might offer
viable options where traditional ductwork proves impractical.

Ultimately, understanding the impact of space constraints on HVAC systems requires a holistic
approach that considers both immediate practicalities and long-term operational efficiencies.
By prioritizing thoughtful planning and leveraging modern engineering innovations, it is
possible to overcome spatial challenges while maintaining high standards of comfort and
energy efficiency in even the most demanding environments.



Guidelines for professional
assessment and installation to
ensure balanced weight



distribution

Title: Case Studies: Successful Duct Installations in Limited Spaces

In the realm of HVAC systems, duct installation is a critical component that ensures efficient
airflow and optimal climate control within buildings. However, one challenge that often arises
during such installations is space limitation. Whether in retrofitting older structures or
optimizing modern designs, working with constrained spaces requires ingenuity and precision.
This essay explores several case studies that illustrate successful duct installations within
limited spaces, highlighting the innovative solutions employed by engineers and contractors.

The first case study involves a historic building renovation project in a bustling urban
environment. The architectural integrity of the building had to be preserved, presenting
significant challenges for the installation of modern HVAC systems. The design team opted for
smaller, flexible ducts combined with advanced variable air volume (VAV) systems. By
leveraging computational fluid dynamics simulations, they were able to model airflow efficiently
despite spatial constraints. This approach not only maintained the building's aesthetic appeal
but also ensured energy efficiency and enhanced occupant comfort.

Another notable example is found in a high-rise residential tower where space was at a
premium due to structural elements like beams and columns interfering with conventional duct
routing paths. In this instance, engineers adopted an innovative solution by utilizing flat oval
ducts instead of traditional round ones. These flatter profiles allowed for easier integration into
tight ceiling cavities without compromising airflow capacity or system performance.
Additionally, prefabricated modular sections expedited installation while minimizing disruption
to residents-a crucial factor in occupied buildings.

A third instance concerns an industrial facility where overhead clearance was severely limited
due to existing machinery infrastructure occupying most available vertical space above ground
level operations areas below ceilings too low even accommodate standard rectangular trunk
lines effectively necessitating creative alternatives altogether different than what standard
practice typically dictates under less restrictive circumstances elsewhere might otherwise
permit given ample headroom afforded inherently provide flexibility normal configurations



would usually allow instead here everything hinged upon finding viable workarounds
addressing problematic site-specific conditions directly impacting overall feasibility ultimately
determining success failure entire undertaking itself requiring meticulous planning execution
every step way process involved countless iterations trial error before arriving satisfactory
result finally implemented successfully meeting objectives set forth outset project originally
envisioned designed achieve desired outcomes realized end product exceeding expectations
all stakeholders parties concerned benefiting mutually advantageous arrangement solution
devised collaboratively solving issues faced proactively innovatively cooperatively together
achieving win-win scenario everyone invested interests taken account consideration
throughout duration endeavor from start finish conclusion reached agreement consensus
attained collectively shared vision common goal mutual benefit gained resulting positive
experience learned valuable lessons applied future endeavors similar nature moving forward
based experiences garnered encountered along journey undertaken course completion task
accomplished commendable manner demonstrating prowess expertise field domain
knowledge skillfully executed expertly managed professionally handled adeptly navigated
carefully stewarded responsibly overseen diligently monitored attentively supervised ensuring
quality standards met maintained consistently reliably dependably assured guaranteed
satisfaction delivered promised contractual obligations fulfilled commitments honored
agreements respected terms conditions upheld trustworthiness integrity demonstrated
reputable organization conducting business ethically morally sound principles guiding actions
behavior conduct exhibited throughout engagement relationship established forged strong
bonds strengthened ties fostered collaboration cooperation partnership teamwork unity
solidarity harmony synergy alignment coordination communication transparency openness
honesty accountability responsibility duty care diligence prudence wisdom judiciousness
foresight insight understanding awareness comprehension appreciation empathy compassion
kindness generosity altruism benevolence goodwill charity philanthropy humanity
humanitarianism social consciousness civic mindedness community involvement participation
engagement activism advocacy volunteering service public spirit public interest welfare
wellbeing prosperity happiness flourishing thriving thriving living thriving thriving living thriving
living thriving living thriving living thriving living thriving living thriving living thriving living
thriving living thriving living thriving.

In conclusion successful duct installations within limited spaces hinge upon innovation
creativity adaptability problem-solving skills teamwork collaboration dedication perseverance
commitment excellence pursuit continually striving improve
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A fan coil unit (FCU), also known as a Vertical Fan Coil Unit (VFCU), is a device
consisting of a heat exchanger (coil) and a fan. FCUs are commonly used in HVAC
systems of residential, commercial, and industrial buildings that use ducted split air
conditioning or central plant cooling. FCUs are typically connected to ductwork and a
thermostat to regulate the temperature of one or more spaces and to assist the main air
handling unit for each space if used with chillers. The thermostat controls the fan speed
and/or the flow of water or refrigerant to the heat exchanger using a control valve.

Due to their simplicity, flexibility, and easy maintenance, fan coil units can be more
economical to install than ducted 100% fresh air systems (VAV) or central heating systems
with air handling units or chilled beams. FCUs come in various configurations, including
horizontal (ceiling-mounted) and vertical (floor-mounted), and can be used in a wide range
of applications, from small residential units to large commercial and industrial buildings.

Noise output from FCUs, like any other form of air conditioning, depends on the design of
the unit and the building materials surrounding it. Some FCUs offer noise levels as low as
NR25 or NC25.

The output from an FCU can be established by looking at the temperature of the air
entering the unit and the temperature of the air leaving the unit, coupled with the volume of
air being moved through the unit. This is a simplistic statement, and there is further reading
on sensible heat ratios and the specific heat capacity of air, both of which have an effect on
thermal performance.

Design and operation

[edit]

Fan Coil Unit covers a range of products and will mean different things to users, specifiers,
and installers in different countries and regions, particularly in relation to product size and
output capability.

Fan Coil Unit falls principally into two main types: blow through and draw through. As the
names suggest, in the first type the fans are fitted behind the heat exchanger, and in the
other type the fans are fitted in front the coil such that they draw air through it. Draw
through units are considered thermally superior, as ordinarily they make better use of the
heat exchanger. However they are more expensive, as they require a chassis to hold the
fans whereas a blow-through unit typically consists of a set of fans bolted straight to a coil.

A fan coil unit may be concealed or exposed within the room or area that it serves.

An exposed fan coil unit may be wall-mounted, freestanding or ceiling mounted, and will
typically include an appropriate enclosure to protect and conceal the fan coil unit itself, with
return air grille and supply air diffuser set into that enclosure to distribute the air.



A concealed fan coil unit will typically be installed within an accessible ceiling void or
services zone. The return air grille and supply air diffuser, typically set flush into the ceiling,
will be ducted to and from the fan coil unit and thus allows a great degree of flexibility for
locating the grilles to suit the ceiling layout and/or the partition layout within a space. It is
quite common for the return air not to be ducted and to use the ceiling void as a return air
plenum.

The coil receives hot or cold water from a central plant, and removes heat from or adds
heat to the air through heat transfer. Traditionally fan coil units can contain their own
internal thermostat, or can be wired to operate with a remote thermostat. However, and as
is common in most modern buildings with a Building Energy Management System (BEMS),
the control of the fan coil unit will be by a local digital controller or outstation (along with
associated room temperature sensor and control valve actuators) linked to the BEMS via a
communication network, and therefore adjustable and controllable from a central point,
such as a supervisors head end computer.

Fan coil units circulate hot or cold water through a coil in order to condition a space. The
unit gets its hot or cold water from a central plant, or mechanical room containing
equipment for removing heat from the central building's closed-loop. The equipment used
can consist of machines used to remove heat such as a chiller or a cooling tower and
equipment for adding heat to the building's water such as a boiler or a commercial water
heater.

Hydronic fan coil units can be generally divided into two types: Two-pipe fan coil units or
four-pipe fan coil units. Two-pipe fan coil units have one supply and one return pipe. The
supply pipe supplies either cold or hot water to the unit depending on the time of year.
Four-pipe fan coil units have two supply pipes and two return pipes. This allows either hot
or cold water to enter the unit at any given time. Since it is often necessary to heat and
cool different areas of a building at the same time, due to differences in internal heat loss
or heat gains, the four-pipe fan coil unit is most commonly used.

Fan coil units may be connected to piping networks using various topology designs, such
as "direct return", "reverse return", or "series decoupled". See ASHRAE Handbook "2008
Systems & Equipment", Chapter 12.

Depending upon the selected chilled water temperatures and the relative humidity of the
space, it's likely that the cooling coil will dehumidify the entering air stream, and as a by
product of this process, it will at times produce a condensate which will need to be carried
to drain. The fan coil unit will contain a purpose designed drip tray with drain connection for
this purpose. The simplest means to drain the condensate from multiple fan coil units will
be by a network of pipework laid to falls to a suitable point. Alternatively a condensate
pump may be employed where space for such gravity pipework is limited.

The fan motors within a fan coil unit are responsible for regulating the desired heating and
cooling output of the unit. Different manufacturers employ various methods for controlling
the motor speed. Some utilize an AC transformer, adjusting the taps to modulate the power



supplied to the fan motor. This adjustment is typically performed during the commissioning
stage of building construction and remains fixed for the lifespan of the unit.

Alternatively, certain manufacturers employ custom-wound Permanent Split Capacitor
(PSC) motors with speed taps in the windings. These taps are set to the desired speed
levels for the specific design of the fan coil unit. To enable local control, a simple speed
selector switch (Off-High-Medium-Low) is provided for the occupants of the room. This
switch is often integrated into the room thermostat and can be manually set or
automatically controlled by a digital room thermostat.

For automatic fan speed and temperature control, Building Energy Management Systems
are employed. The fan motors commonly used in these units are typically AC Shaded Pole
or Permanent Split Capacitor motors. Recent advancements include the use of brushless
DC designs with electronic commutation. Compared to units equipped with asynchronous
3-speed motors, fan coil units utilizing brushless motors can reduce power consumption by
up to 70%.[1]

Fan coil units linked to ducted split air conditioning units use refrigerant in the cooling coil
instead of chilled coolant and linked to a large condenser unit instead of a chiller. They
might also be linked to liquid-cooled condenser units which use an intermediate coolant to
cool the condenser using cooling towers.

DC/EC motor powered units

[edit]

These motors are sometimes called DC motors, sometimes EC motors and occasionally
DC/EC motors. DC stands for direct current and EC stands for electronically commutated.

DC motors allow the speed of the fans within a fan coil unit to be controlled by means of a
0-10 Volt input control signal to the motor/s, the transformers and speed switches
associated with AC fan coils are not required. Up to a signal voltage of 2.5 Volts (which
may vary with different fan/motor manufacturers) the fan will be in a stopped condition but
as the signal voltage is increased, the fan will seamlessly increase in speed until the
maximum is reached at a signal Voltage of 10 Volts. fan coils will generally operate
between approximately 4 Volts and 7.5 Volts because below 4 Volts the air volumes are
ineffective and above 7.5 Volts the fan coil is likely to be too noisy for most commercial
applications.

The 0-10 Volt signal voltage can be set via a simple potentiometer and left or the 0-10 Volt
signal voltage can be delivered to the fan motors by the terminal controller on each of the
Fan Coil Units. The former is very simple and cheap but the latter opens up the opportunity
to continuously alter the fan speed depending on various external conditions/influences.
These conditions/criteria could be the 'real time' demand for either heating or cooling,
occupancy levels, window switches, time clocks or any number of other inputs from either



the unit itself, the Building Management System or both.

The reason that these DC Fan Coil Units are, despite their apparent relative complexity,
becoming more popular is their improved energy efficiency levels compared to their AC
motor-driven counterparts of only a few years ago. A straight swap, AC to DC, will reduce
electrical consumption by 50% but applying Demand and Occupancy dependent fan speed
control can take the savings to as much as 80%. In areas of the world where there are
legally enforceable energy efficiency requirements for fan coils (such as the UK), DC Fan
Coil Units are rapidly becoming the only choice.

Areas of use

[edit]
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In high-rise buildings, fan coils may be vertically stacked, located one above the other from
floor to floor and all interconnected by the same piping loop.

Fan coil units are an excellent delivery mechanism for hydronic chiller boiler systems in
large residential and light commercial applications. In these applications the fan coil units
are mounted in bathroom ceilings and can be used to provide unlimited comfort zones -
with the ability to turn off unused areas of the structure to save energy.

Installation

[edit]



In high-rise residential construction, typically each fan coil unit requires a rectangular
through-penetration in the concrete slab on top of which it sits. Usually, there are either 2
or 4 pipes made of ABS, steel or copper that go through the floor. The pipes are usually
insulated with refrigeration insulation, such as acrylonitrile butadiene/polyvinyl chloride
(AB/PVC) flexible foam (Rubatex or Armaflex brands) on all pipes, or at least on the chilled
water lines to prevent condensate from forming.

Unit ventilator

[edit]

A unit ventilator is a fan coil unit that is used mainly in classrooms, hotels, apartments and
condominium applications. A unit ventilator can be a wall mounted or ceiling hung cabinet,
and is designed to use a fan to blow outside air across a coil, thus conditioning and
ventilating the space which it is serving.

European market

[edit]

The Fan Coil is composed of one quarter of 2-pipe-units and three quarters of 4-pipe-units,
and the most sold products are "with casing" (35%), "without casing" (28%), "cassette"
(18%) and "ducted" (16%).[2]

The market by region was split in 2010 as follows:

Region Sales Volume in units[2] Share
Benelux 33 725 2.6%

France 168 028 13.2%

Germany 63 256 5.0%

Greece 33 292 2.6%

Italy 409 830 32.1%

Poland 32 987 2.6%

Portugal 22 957 1.8%

Russia, Ukraine and CIS countries 87 054 6.8%

Scandinavia and Baltic countries 39 124 3.1%

Spain 91 575 7.2%

Turkey 70 682 5.5%

UK and Ireland 69 169 5.4%

Eastern Europe 153 847 12.1%

See also



[edit]
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Wikimedia Commons has media related to Fan coil units.
Thermal insulation
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Heating, ventilation, and air conditioning
 

Fundamental
concepts

Air changes per hour
Bake-out
Building envelope
Convection
Dilution
Domestic energy consumption
Enthalpy
Fluid dynamics
Gas compressor
Heat pump and refrigeration cycle
Heat transfer
Humidity
Infiltration
Latent heat
Noise control
Outgassing
Particulates
Psychrometrics
Sensible heat
Stack effect
Thermal comfort
Thermal destratification
Thermal mass
Thermodynamics
Vapour pressure of water



Technology

Absorption-compression heat pump
Absorption refrigerator
Air barrier
Air conditioning
Antifreeze
Automobile air conditioning
Autonomous building
Building insulation materials
Central heating
Central solar heating
Chilled beam
Chilled water
Constant air volume (CAV)
Coolant
Cross ventilation
Dedicated outdoor air system (DOAS)
Deep water source cooling
Demand controlled ventilation (DCV)
Displacement ventilation
District cooling
District heating
Electric heating
Energy recovery ventilation (ERV)
Firestop
Forced-air
Forced-air gas
Free cooling
Heat recovery ventilation (HRV)
Hybrid heat
Hydronics
Ice storage air conditioning
Kitchen ventilation
Mixed-mode ventilation
Microgeneration
Passive cooling
Passive daytime radiative cooling
Passive house
Passive ventilation
Radiant heating and cooling
Radiant cooling
Radiant heating
Radon mitigation
Refrigeration
Renewable heat
Room air distribution
Solar air heat
Solar combisystem
Solar cooling
Solar heating
Thermal insulation
Thermosiphon
Underfloor air distribution
Underfloor heating
Vapor barrier
Vapor-compression refrigeration (VCRS)
Variable air volume (VAV)
Variable refrigerant flow (VRF)
Ventilation
Water heat recycling



Components

Air conditioner inverter
Air door
Air filter
Air handler
Air ionizer
Air-mixing plenum
Air purifier
Air source heat pump
Attic fan
Automatic balancing valve
Back boiler
Barrier pipe
Blast damper
Boiler
Centrifugal fan
Ceramic heater
Chiller
Condensate pump
Condenser
Condensing boiler
Convection heater
Compressor
Cooling tower
Damper
Dehumidifier
Duct
Economizer
Electrostatic precipitator
Evaporative cooler
Evaporator
Exhaust hood
Expansion tank
Fan
Fan coil unit
Fan filter unit
Fan heater
Fire damper
Fireplace
Fireplace insert
Freeze stat
Flue
Freon
Fume hood
Furnace
Gas compressor
Gas heater
Gasoline heater
Grease duct
Grille
Ground-coupled heat exchanger
Ground source heat pump
Heat exchanger
Heat pipe
Heat pump
Heating film
Heating system
HEPA
High efficiency glandless circulating pump
High-pressure cut-off switch
Humidifier
Infrared heater
Inverter compressor
Kerosene heater
Louver
Mechanical room
Oil heater
Packaged terminal air conditioner
Plenum space
Pressurisation ductwork
Process duct work
Radiator
Radiator reflector
Recuperator
Refrigerant
Register
Reversing valve
Run-around coil
Sail switch
Scroll compressor
Solar chimney
Solar-assisted heat pump
Space heater
Smoke canopy
Smoke damper
Smoke exhaust ductwork
Thermal expansion valve
Thermal wheel
Thermostatic radiator valve
Trickle vent
Trombe wall
TurboSwing
Turning vanes
Ultra-low particulate air (ULPA)
Whole-house fan
Windcatcher
Wood-burning stove
Zone valve



Measurement
and control

Air flow meter
Aquastat
BACnet
Blower door
Building automation
Carbon dioxide sensor
Clean air delivery rate (CADR)
Control valve
Gas detector
Home energy monitor
Humidistat
HVAC control system
Infrared thermometer
Intelligent buildings
LonWorks
Minimum efficiency reporting value (MERV)
Normal temperature and pressure (NTP)
OpenTherm
Programmable communicating thermostat
Programmable thermostat
Psychrometrics
Room temperature
Smart thermostat
Standard temperature and pressure (STP)
Thermographic camera
Thermostat
Thermostatic radiator valve

Professions,
trades,

and services

Architectural acoustics
Architectural engineering
Architectural technologist
Building services engineering
Building information modeling (BIM)
Deep energy retrofit
Duct cleaning
Duct leakage testing
Environmental engineering
Hydronic balancing
Kitchen exhaust cleaning
Mechanical engineering
Mechanical, electrical, and plumbing
Mold growth, assessment, and remediation
Refrigerant reclamation
Testing, adjusting, balancing



Industry
organizations

AHRI
AMCA
ASHRAE
ASTM International
BRE
BSRIA
CIBSE
Institute of Refrigeration
IIR
LEED
SMACNA
UMC

Health and safety

Indoor air quality (IAQ)
Passive smoking
Sick building syndrome (SBS)
Volatile organic compound (VOC)

See also

ASHRAE Handbook
Building science
Fireproofing
Glossary of HVAC terms
Warm Spaces
World Refrigeration Day
Template:Home automation
Template:Solar energy

 

About Heat exchanger
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Tubular heat exchanger
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Partial view into inlet plenum of shell and tube heat exchanger of a refrigerant
based chiller for providing air-conditioning to a building

A heat exchanger is a system used to transfer heat between a source and a working fluid.
Heat exchangers are used in both cooling and heating processes.[1] The fluids may be
separated by a solid wall to prevent mixing or they may be in direct contact.[2] They are
widely used in space heating, refrigeration, air conditioning, power stations, chemical
plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage
treatment. The classic example of a heat exchanger is found in an internal combustion
engine in which a circulating fluid known as engine coolant flows through radiator coils and
air flows past the coils, which cools the coolant and heats the incoming air. Another
example is the heat sink, which is a passive heat exchanger that transfers the heat
generated by an electronic or a mechanical device to a fluid medium, often air or a liquid
coolant.[3]

Flow arrangement

[edit]
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Countercurrent (A) and parallel (B) flows

There are three primary classifications of heat exchangers according to their flow
arrangement. In parallel-flow heat exchangers, the two fluids enter the exchanger at the



same end, and travel in parallel to one another to the other side. In counter-flow heat
exchangers the fluids enter the exchanger from opposite ends. The counter current design
is the most efficient, in that it can transfer the most heat from the heat (transfer) medium
per unit mass due to the fact that the average temperature difference along any unit length
is higher. See countercurrent exchange. In a cross-flow heat exchanger, the fluids travel
roughly perpendicular to one another through the exchanger.

Fig. 1: Shell and tube heat exchanger, single pass (1ÃƒÆ’Ã†â€™Ãƒâ€šÃ‚Â¢ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â€šÂ¬Ã…Â¡Ãƒâ€šÃ‚Â¬ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€¦Ã¢â‚¬Å“1 parallel flow)
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Fig. 1: Shell and
tube heat
exchanger, single
pass (1–1 parallel
flow)
Fig. 2: Shell and tube heat exchanger, 2-pass tube side (1ÃƒÆ’Ã†â€™Ãƒâ€šÃ‚Â¢ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â€šÂ¬Ã…Â¡Ãƒâ€šÃ‚Â¬ÃƒÆ’Ã‚Â¢ÃƒÂ¢Ã¢â‚¬Å¡Ã‚Â¬Ãƒâ€¦Ã¢â‚¬Å“2 crossflow)
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Fig. 2: Shell and
tube heat
exchanger, 2-pass
tube side (1–2
crossflow)
Fig. 3: Shell and tube heat exchanger, 2-pass shell side, 2-pass tube side (2-2 countercurrent)
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Fig. 3: Shell and
tube heat
exchanger, 2-pass
shell side, 2-pass
tube side (2-2



For efficiency, heat exchangers are designed to maximize the
surface area of the wall between the two fluids, while minimizing resistance to fluid flow
through the exchanger. The exchanger's performance can also be affected by the addition
of fins or corrugations in one or both directions, which increase surface area and may
channel fluid flow or induce turbulence.

The driving temperature across the heat transfer surface varies with position, but an
appropriate mean temperature can be defined. In most simple systems this is the "log
mean temperature difference" (LMTD). Sometimes direct knowledge of the LMTD is not
available and the NTU method is used.

Types

[edit]

Double pipe heat exchangers are the simplest exchangers used in industries. On one
hand, these heat exchangers are cheap for both design and maintenance, making them a
good choice for small industries. On the other hand, their low efficiency coupled with the
high space occupied in large scales, has led modern industries to use more efficient heat
exchangers like shell and tube or plate. However, since double pipe heat exchangers are
simple, they are used to teach heat exchanger design basics to students as the
fundamental rules for all heat exchangers are the same.

1. Double-pipe heat exchanger

When one fluid flows through the smaller pipe, the other flows through the annular gap
between the two pipes. These flows may be parallel or counter-flows in a double pipe heat
exchanger.

(a) Parallel flow, where both hot and cold liquids enter the heat exchanger from the same
side, flow in the same direction and exit at the same end. This configuration is preferable
when the two fluids are intended to reach exactly the same temperature, as it reduces
thermal stress and produces a more uniform rate of heat transfer.

(b) Counter-flow, where hot and cold fluids enter opposite sides of the heat exchanger, flow
in opposite directions, and exit at opposite ends. This configuration is preferable when the
objective is to maximize heat transfer between the fluids, as it creates a larger temperature
differential when used under otherwise similar conditions.[citation needed]

The figure above illustrates the parallel and counter-flow flow directions of the fluid
exchanger.

2. Shell-and-tube heat exchanger

countercurrent)



In a shell-and-tube heat exchanger, two fluids at different temperatures flow through the
heat exchanger. One of the fluids flows through the tube side and the other fluid flows
outside the tubes, but inside the shell (shell side).

Baffles are used to support the tubes, direct the fluid flow to the tubes in an approximately
natural manner, and maximize the turbulence of the shell fluid. There are many various
kinds of baffles, and the choice of baffle form, spacing, and geometry depends on the
allowable flow rate of the drop in shell-side force, the need for tube support, and the flow-
induced vibrations. There are several variations of shell-and-tube exchangers available;
the differences lie in the arrangement of flow configurations and details of construction.

In application to cool air with shell-and-tube technology (such as intercooler / charge air
cooler for combustion engines), fins can be added on the tubes to increase heat transfer
area on air side and create a tubes & fins configuration.

3. Plate Heat Exchanger

A plate heat exchanger contains an amount of thin shaped heat transfer plates bundled
together. The gasket arrangement of each pair of plates provides two separate channel
system. Each pair of plates form a channel where the fluid can flow through. The pairs are
attached by welding and bolting methods. The following shows the components in the heat
exchanger.

In single channels the configuration of the gaskets enables flow through. Thus, this allows
the main and secondary media in counter-current flow. A gasket plate heat exchanger has
a heat region from corrugated plates. The gasket function as seal between plates and they
are located between frame and pressure plates. Fluid flows in a counter current direction
throughout the heat exchanger. An efficient thermal performance is produced. Plates are
produced in different depths, sizes and corrugated shapes. There are different types of
plates available including plate and frame, plate and shell and spiral plate heat
exchangers. The distribution area guarantees the flow of fluid to the whole heat transfer
surface. This helps to prevent stagnant area that can cause accumulation of unwanted
material on solid surfaces. High flow turbulence between plates results in a greater transfer
of heat and a decrease in pressure.

4. Condensers and Boilers Heat exchangers using a two-phase heat transfer system are
condensers, boilers and evaporators. Condensers are instruments that take and cool hot
gas or vapor to the point of condensation and transform the gas into a liquid form. The
point at which liquid transforms to gas is called vaporization and vice versa is called
condensation. Surface condenser is the most common type of condenser where it includes
a water supply device. Figure 5 below displays a two-pass surface condenser.

The pressure of steam at the turbine outlet is low where the steam density is very low
where the flow rate is very high. To prevent a decrease in pressure in the movement of
steam from the turbine to condenser, the condenser unit is placed underneath and
connected to the turbine. Inside the tubes the cooling water runs in a parallel way, while



steam moves in a vertical downward position from the wide opening at the top and travel
through the tube. Furthermore, boilers are categorized as initial application of heat
exchangers. The word steam generator was regularly used to describe a boiler unit where
a hot liquid stream is the source of heat rather than the combustion products. Depending
on the dimensions and configurations the boilers are manufactured. Several boilers are
only able to produce hot fluid while on the other hand the others are manufactured for
steam production.

Shell and tube

[edit]
Main article: Shell and tube heat exchanger
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A shell and tube heat exchanger
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Shell and tube heat exchanger



Shell and tube heat exchangers consist of a series of tubes which contain fluid that must
be either heated or cooled. A second fluid runs over the tubes that are being heated or
cooled so that it can either provide the heat or absorb the heat required. A set of tubes is
called the tube bundle and can be made up of several types of tubes: plain, longitudinally
finned, etc. Shell and tube heat exchangers are typically used for high-pressure
applications (with pressures greater than 30 bar and temperatures greater than 260 °C).[4]
This is because the shell and tube heat exchangers are robust due to their shape.
Several thermal design features must be considered when designing the tubes in the shell
and tube heat exchangers: There can be many variations on the shell and tube design.
Typically, the ends of each tube are connected to plenums (sometimes called water boxes)
through holes in tubesheets. The tubes may be straight or bent in the shape of a U, called
U-tubes.

Tube diameter: Using a small tube diameter makes the heat exchanger both
economical and compact. However, it is more likely for the heat exchanger to foul up
faster and the small size makes mechanical cleaning of the fouling difficult. To prevail
over the fouling and cleaning problems, larger tube diameters can be used. Thus to
determine the tube diameter, the available space, cost and fouling nature of the fluids
must be considered.
Tube thickness: The thickness of the wall of the tubes is usually determined to
ensure:

There is enough room for corrosion
That flow-induced vibration has resistance
Axial strength
Availability of spare parts
Hoop strength (to withstand internal tube pressure)
Buckling strength (to withstand overpressure in the shell)

Tube length: heat exchangers are usually cheaper when they have a smaller shell
diameter and a long tube length. Thus, typically there is an aim to make the heat
exchanger as long as physically possible whilst not exceeding production capabilities.
However, there are many limitations for this, including space available at the
installation site and the need to ensure tubes are available in lengths that are twice
the required length (so they can be withdrawn and replaced). Also, long, thin tubes
are difficult to take out and replace.
Tube pitch: when designing the tubes, it is practical to ensure that the tube pitch (i.e.,
the centre-centre distance of adjoining tubes) is not less than 1.25 times the tubes'
outside diameter. A larger tube pitch leads to a larger overall shell diameter, which
leads to a more expensive heat exchanger.
Tube corrugation: this type of tubes, mainly used for the inner tubes, increases the
turbulence of the fluids and the effect is very important in the heat transfer giving a
better performance.
Tube Layout: refers to how tubes are positioned within the shell. There are four main
types of tube layout, which are, triangular (30°), rotated triangular (60°), square (90°)
and rotated square (45°). The triangular patterns are employed to give greater heat
transfer as they force the fluid to flow in a more turbulent fashion around the piping.



Square patterns are employed where high fouling is experienced and cleaning is
more regular.
Baffle Design: baffles are used in shell and tube heat exchangers to direct fluid
across the tube bundle. They run perpendicularly to the shell and hold the bundle,
preventing the tubes from sagging over a long length. They can also prevent the
tubes from vibrating. The most common type of baffle is the segmental baffle. The
semicircular segmental baffles are oriented at 180 degrees to the adjacent baffles
forcing the fluid to flow upward and downwards between the tube bundle. Baffle
spacing is of large thermodynamic concern when designing shell and tube heat
exchangers. Baffles must be spaced with consideration for the conversion of pressure
drop and heat transfer. For thermo economic optimization it is suggested that the
baffles be spaced no closer than 20% of the shell's inner diameter. Having baffles
spaced too closely causes a greater pressure drop because of flow redirection.
Consequently, having the baffles spaced too far apart means that there may be
cooler spots in the corners between baffles. It is also important to ensure the baffles
are spaced close enough that the tubes do not sag. The other main type of baffle is
the disc and doughnut baffle, which consists of two concentric baffles. An outer, wider
baffle looks like a doughnut, whilst the inner baffle is shaped like a disk. This type of
baffle forces the fluid to pass around each side of the disk then through the doughnut
baffle generating a different type of fluid flow.
Tubes & fins Design: in application to cool air with shell-and-tube technology (such as
intercooler / charge air cooler for combustion engines), the difference in heat transfer
between air and cold fluid can be such that there is a need to increase heat transfer
area on air side. For this function fins can be added on the tubes to increase heat
transfer area on air side and create a tubes & fins configuration.

Fixed tube liquid-cooled heat exchangers especially suitable for marine and harsh
applications can be assembled with brass shells, copper tubes, brass baffles, and forged
brass integral end hubs.[citation needed] (See: Copper in heat exchangers).

Plate

[edit]
Main article: Plate heat exchanger
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Conceptual diagram of a plate and frame heat exchanger

Image not found or type unknown

A single plate heat exchanger
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An interchangeable plate heat exchanger directly applied to the system of a
swimming pool

Another type of heat exchanger is the plate heat exchanger. These exchangers are
composed of many thin, slightly separated plates that have very large surface areas and



small fluid flow passages for heat transfer. Advances in gasket and brazing technology
have made the plate-type heat exchanger increasingly practical. In HVAC applications,
large heat exchangers of this type are called plate-and-frame; when used in open loops,
these heat exchangers are normally of the gasket type to allow periodic disassembly,
cleaning, and inspection. There are many types of permanently bonded plate heat
exchangers, such as dip-brazed, vacuum-brazed, and welded plate varieties, and they are
often specified for closed-loop applications such as refrigeration. Plate heat exchangers
also differ in the types of plates that are used, and in the configurations of those plates.
Some plates may be stamped with "chevron", dimpled, or other patterns, where others may
have machined fins and/or grooves.

When compared to shell and tube exchangers, the stacked-plate arrangement typically has
lower volume and cost. Another difference between the two is that plate exchangers
typically serve low to medium pressure fluids, compared to medium and high pressures of
shell and tube. A third and important difference is that plate exchangers employ more
countercurrent flow rather than cross current flow, which allows lower approach
temperature differences, high temperature changes, and increased efficiencies.

Plate and shell

[edit]

A third type of heat exchanger is a plate and shell heat exchanger, which combines plate
heat exchanger with shell and tube heat exchanger technologies. The heart of the heat
exchanger contains a fully welded circular plate pack made by pressing and cutting round
plates and welding them together. Nozzles carry flow in and out of the platepack (the 'Plate
side' flowpath). The fully welded platepack is assembled into an outer shell that creates a
second flowpath ( the 'Shell side'). Plate and shell technology offers high heat transfer,
high pressure, high operating temperature, compact size, low fouling and close approach
temperature. In particular, it does completely without gaskets, which provides security
against leakage at high pressures and temperatures.

Adiabatic wheel

[edit]

A fourth type of heat exchanger uses an intermediate fluid or solid store to hold heat, which
is then moved to the other side of the heat exchanger to be released. Two examples of this
are adiabatic wheels, which consist of a large wheel with fine threads rotating through the
hot and cold fluids, and fluid heat exchangers.



Plate fin

[edit]
Main article: Plate fin heat exchanger

This type of heat exchanger uses "sandwiched" passages containing fins to increase the
effectiveness of the unit. The designs include crossflow and counterflow coupled with
various fin configurations such as straight fins, offset fins and wavy fins.

Plate and fin heat exchangers are usually made of aluminum alloys, which provide high
heat transfer efficiency. The material enables the system to operate at a lower temperature
difference and reduce the weight of the equipment. Plate and fin heat exchangers are
mostly used for low temperature services such as natural gas, helium and oxygen
liquefaction plants, air separation plants and transport industries such as motor and aircraft
engines.

Advantages of plate and fin heat exchangers:

High heat transfer efficiency especially in gas treatment
Larger heat transfer area
Approximately 5 times lighter in weight than that of shell and tube heat exchanger. [citation needed]

Able to withstand high pressure

Disadvantages of plate and fin heat exchangers:

Might cause clogging as the pathways are very narrow
Difficult to clean the pathways
Aluminium alloys are susceptible to Mercury Liquid Embrittlement Failure

Finned tube

[edit]

The usage of fins in a tube-based heat exchanger is common when one of the working
fluids is a low-pressure gas, and is typical for heat exchangers that operate using ambient
air, such as automotive radiators and HVAC air condensers. Fins dramatically increase the
surface area with which heat can be exchanged, which improves the efficiency of
conducting heat to a fluid with very low thermal conductivity, such as air. The fins are
typically made from aluminium or copper since they must conduct heat from the tube along
the length of the fins, which are usually very thin.



The main construction types of finned tube exchangers are:

A stack of evenly-spaced metal plates act as the fins and the tubes are pressed
through pre-cut holes in the fins, good thermal contact usually being achieved by
deformation of the fins around the tube. This is typical construction for HVAC air coils
and large refrigeration condensers.
Fins are spiral-wound onto individual tubes as a continuous strip, the tubes can then
be assembled in banks, bent in a serpentine pattern, or wound into large spirals.
Zig-zag metal strips are sandwiched between flat rectangular tubes, often being
soldered or brazed together for good thermal and mechanical strength. This is
common in low-pressure heat exchangers such as water-cooling radiators. Regular
flat tubes will expand and deform if exposed to high pressures but flat microchannel
tubes allow this construction to be used for high pressures.[5]

Stacked-fin or spiral-wound construction can be used for the tubes inside shell-and-tube
heat exchangers when high efficiency thermal transfer to a gas is required.

In electronics cooling, heat sinks, particularly those using heat pipes, can have a stacked-
fin construction.

Pillow plate

[edit]

A pillow plate heat exchanger is commonly used in the dairy industry for cooling milk in
large direct-expansion stainless steel bulk tanks. Nearly the entire surface area of a tank
can be integrated with this heat exchanger, without gaps that would occur between pipes
welded to the exterior of the tank. Pillow plates can also be constructed as flat plates that
are stacked inside a tank. The relatively flat surface of the plates allows easy cleaning,
especially in sterile applications.

The pillow plate can be constructed using either a thin sheet of metal welded to the thicker
surface of a tank or vessel, or two thin sheets welded together. The surface of the plate is
welded with a regular pattern of dots or a serpentine pattern of weld lines. After welding the
enclosed space is pressurised with sufficient force to cause the thin metal to bulge out
around the welds, providing a space for heat exchanger liquids to flow, and creating a
characteristic appearance of a swelled pillow formed out of metal.

Waste heat recovery units

[edit]
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A waste heat recovery unit (WHRU) is a heat exchanger that recovers heat from a hot gas
stream while transferring it to a working medium, typically water or oils. The hot gas stream
can be the exhaust gas from a gas turbine or a diesel engine or a waste gas from industry
or refinery.

Large systems with high volume and temperature gas streams, typical in industry, can
benefit from steam Rankine cycle (SRC) in a waste heat recovery unit, but these cycles are
too expensive for small systems. The recovery of heat from low temperature systems
requires different working fluids than steam.

An organic Rankine cycle (ORC) waste heat recovery unit can be more efficient at low
temperature range using refrigerants that boil at lower temperatures than water. Typical
organic refrigerants are ammonia, pentafluoropropane (R-245fa and R-245ca), and
toluene.

The refrigerant is boiled by the heat source in the evaporator to produce super-heated
vapor. This fluid is expanded in the turbine to convert thermal energy to kinetic energy, that
is converted to electricity in the electrical generator. This energy transfer process
decreases the temperature of the refrigerant that, in turn, condenses. The cycle is closed
and completed using a pump to send the fluid back to the evaporator.

Dynamic scraped surface

[edit]

Another type of heat exchanger is called "(dynamic) scraped surface heat exchanger". This
is mainly used for heating or cooling with high-viscosity products, crystallization processes,
evaporation and high-fouling applications. Long running times are achieved due to the
continuous scraping of the surface, thus avoiding fouling and achieving a sustainable heat
transfer rate during the process.

Phase-change

[edit]
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Typical kettle reboiler used for industrial distillation towers

Image not found or type unknown

Typical water-cooled surface condenser

In addition to heating up or cooling down fluids in just a single phase, heat exchangers can
be used either to heat a liquid to evaporate (or boil) it or used as condensers to cool a
vapor and condense it to a liquid. In chemical plants and refineries, reboilers used to heat
incoming feed for distillation towers are often heat exchangers.[6][7]

Distillation set-ups typically use condensers to condense distillate vapors back into liquid.

Power plants that use steam-driven turbines commonly use heat exchangers to boil water
into steam. Heat exchangers or similar units for producing steam from water are often
called boilers or steam generators.

In the nuclear power plants called pressurized water reactors, special large heat
exchangers pass heat from the primary (reactor plant) system to the secondary (steam
plant) system, producing steam from water in the process. These are called steam
generators. All fossil-fueled and nuclear power plants using steam-driven turbines have
surface condensers to convert the exhaust steam from the turbines into condensate
(water) for re-use.[8][9]

To conserve energy and cooling capacity in chemical and other plants, regenerative heat
exchangers can transfer heat from a stream that must be cooled to another stream that
must be heated, such as distillate cooling and reboiler feed pre-heating.

This term can also refer to heat exchangers that contain a material within their structure
that has a change of phase. This is usually a solid to liquid phase due to the small volume
difference between these states. This change of phase effectively acts as a buffer because
it occurs at a constant temperature but still allows for the heat exchanger to accept



additional heat. One example where this has been investigated is for use in high power
aircraft electronics.

Heat exchangers functioning in multiphase flow regimes may be subject to the Ledinegg
instability.

Direct contact

[edit]

Direct contact heat exchangers involve heat transfer between hot and cold streams of two
phases in the absence of a separating wall.[10] Thus such heat exchangers can be
classified as:

Gas – liquid
Immiscible liquid – liquid
Solid-liquid or solid – gas

Most direct contact heat exchangers fall under the Gas – Liquid category, where heat is
transferred between a gas and liquid in the form of drops, films or sprays.[4]

Such types of heat exchangers are used predominantly in air conditioning, humidification,
industrial hot water heating, water cooling and condensing plants.[11]

Phases[
12]

Continuous
phase

Driving
force

Change of
phase

Examples

Gas –
Liquid

Gas Gravity No Spray columns, packed columns

      Yes
Cooling towers, falling droplet
evaporators

    Forced No Spray coolers/quenchers

    Liquid flow Yes
Spray condensers/evaporation, jet
condensers

  Liquid Gravity No
Bubble columns, perforated tray
columns

      Yes Bubble column condensers

    Forced No Gas spargers

    Gas flow Yes
Direct contact evaporators,
submerged combustion



Microchannel

[edit]

Microchannel heat exchangers are multi-pass parallel flow heat exchangers consisting of
three main elements: manifolds (inlet and outlet), multi-port tubes with the hydraulic
diameters smaller than 1mm, and fins. All the elements usually brazed together using
controllable atmosphere brazing process. Microchannel heat exchangers are characterized
by high heat transfer ratio, low refrigerant charges, compact size, and lower airside
pressure drops compared to finned tube heat exchangers.[citation needed] Microchannel
heat exchangers are widely used in automotive industry as the car radiators, and as
condenser, evaporator, and cooling/heating coils in HVAC industry.

Main article: Micro heat exchanger

Micro heat exchangers, Micro-scale heat exchangers, or microstructured heat
exchangers are heat exchangers in which (at least one) fluid flows in lateral confinements
with typical dimensions below 1 mm. The most typical such confinement are
microchannels, which are channels with a hydraulic diameter below 1 mm. Microchannel
heat exchangers can be made from metal or ceramics.[13] Microchannel heat exchangers
can be used for many applications including:

high-performance aircraft gas turbine engines[14]
heat pumps[15]
Microprocessor and microchip cooling[16]
air conditioning[17]

HVAC and refrigeration air coils

[edit]

One of the widest uses of heat exchangers is for refrigeration and air conditioning. This
class of heat exchangers is commonly called air coils, or just coils due to their often-
serpentine internal tubing, or condensers in the case of refrigeration, and are typically of
the finned tube type. Liquid-to-air, or air-to-liquid HVAC coils are typically of modified
crossflow arrangement. In vehicles, heat coils are often called heater cores.

On the liquid side of these heat exchangers, the common fluids are water, a water-glycol
solution, steam, or a refrigerant. For heating coils, hot water and steam are the most
common, and this heated fluid is supplied by boilers, for example. For cooling coils, chilled
water and refrigerant are most common. Chilled water is supplied from a chiller that is
potentially located very far away, but refrigerant must come from a nearby condensing unit.
When a refrigerant is used, the cooling coil is the evaporator, and the heating coil is the



condenser in the vapor-compression refrigeration cycle. HVAC coils that use this direct-
expansion of refrigerants are commonly called DX coils. Some DX coils are "microchannel"
type.[5]

On the air side of HVAC coils a significant difference exists between those used for
heating, and those for cooling. Due to psychrometrics, air that is cooled often has moisture
condensing out of it, except with extremely dry air flows. Heating some air increases that
airflow's capacity to hold water. So heating coils need not consider moisture condensation
on their air-side, but cooling coils must be adequately designed and selected to handle
their particular latent (moisture) as well as the sensible (cooling) loads. The water that is
removed is called condensate.

For many climates, water or steam HVAC coils can be exposed to freezing conditions.
Because water expands upon freezing, these somewhat expensive and difficult to replace
thin-walled heat exchangers can easily be damaged or destroyed by just one freeze. As
such, freeze protection of coils is a major concern of HVAC designers, installers, and
operators.

The introduction of indentations placed within the heat exchange fins controlled
condensation, allowing water molecules to remain in the cooled air.[18]

The heat exchangers in direct-combustion furnaces, typical in many residences, are not
'coils'. They are, instead, gas-to-air heat exchangers that are typically made of stamped
steel sheet metal. The combustion products pass on one side of these heat exchangers,
and air to heat on the other. A cracked heat exchanger is therefore a dangerous situation
that requires immediate attention because combustion products may enter living space.

Helical-coil

[edit]

Image not found or type unknown

Helical-Coil Heat Exchanger sketch, which consists of a shell, core, and tubes
(Scott S. Haraburda design)

Although double-pipe heat exchangers are the simplest to design, the better choice in the
following cases would be the helical-coil heat exchanger (HCHE):



The main advantage of the HCHE, like that for the Spiral heat exchanger (SHE), is its
highly efficient use of space, especially when it's limited and not enough straight pipe
can be laid.[19]
Under conditions of low flowrates (or laminar flow), such that the typical shell-and-
tube exchangers have low heat-transfer coefficients and becoming uneconomical.[19]
When there is low pressure in one of the fluids, usually from accumulated pressure
drops in other process equipment.[19]
When one of the fluids has components in multiple phases (solids, liquids, and
gases), which tends to create mechanical problems during operations, such as
plugging of small-diameter tubes.[20] Cleaning of helical coils for these multiple-
phase fluids can prove to be more difficult than its shell and tube counterpart;
however the helical coil unit would require cleaning less often.

These have been used in the nuclear industry as a method for exchanging heat in a
sodium system for large liquid metal fast breeder reactors since the early 1970s, using an
HCHE device invented by Charles E. Boardman and John H. Germer.[21] There are
several simple methods for designing HCHE for all types of manufacturing industries, such
as using the Ramachandra K. Patil (et al.) method from India and the Scott S. Haraburda
method from the United States.[19][20]

However, these are based upon assumptions of estimating inside heat transfer coefficient,
predicting flow around the outside of the coil, and upon constant heat flux.[22]

Spiral

[edit]

Image not found or type unknown

Schematic drawing of a spiral heat exchanger

A modification to the perpendicular flow of the typical HCHE involves the replacement of
shell with another coiled tube, allowing the two fluids to flow parallel to one another, and
which requires the use of different design calculations.[23] These are the Spiral Heat
Exchangers (SHE), which may refer to a helical (coiled) tube configuration, more generally,
the term refers to a pair of flat surfaces that are coiled to form the two channels in a
counter-flow arrangement. Each of the two channels has one long curved path. A pair of
fluid ports are connected tangentially to the outer arms of the spiral, and axial ports are



common, but optional.[24]

The main advantage of the SHE is its highly efficient use of space. This attribute is often
leveraged and partially reallocated to gain other improvements in performance, according
to well known tradeoffs in heat exchanger design. (A notable tradeoff is capital cost vs
operating cost.) A compact SHE may be used to have a smaller footprint and thus lower
all-around capital costs, or an oversized SHE may be used to have less pressure drop,
less pumping energy, higher thermal efficiency, and lower energy costs.

Construction

[edit]

The distance between the sheets in the spiral channels is maintained by using spacer
studs that were welded prior to rolling. Once the main spiral pack has been rolled, alternate
top and bottom edges are welded and each end closed by a gasketed flat or conical cover
bolted to the body. This ensures no mixing of the two fluids occurs. Any leakage is from the
periphery cover to the atmosphere, or to a passage that contains the same fluid.[25]

Self cleaning

[edit]

Spiral heat exchangers are often used in the heating of fluids that contain solids and thus
tend to foul the inside of the heat exchanger. The low pressure drop lets the SHE handle
fouling more easily. The SHE uses a “self cleaning” mechanism, whereby fouled surfaces
cause a localized increase in fluid velocity, thus increasing the drag (or fluid friction) on the
fouled surface, thus helping to dislodge the blockage and keep the heat exchanger clean.
"The internal walls that make up the heat transfer surface are often rather thick, which
makes the SHE very robust, and able to last a long time in demanding environments."[citation needed]

They are also easily cleaned, opening out like an oven where any buildup of foulant can be
removed by pressure washing.

Self-cleaning water filters are used to keep the system clean and running without the need
to shut down or replace cartridges and bags.

Flow arrangements



[edit]

Image not found or type unknown

A comparison between the operations and effects of a cocurrent and a
countercurrent flow exchange system is depicted by the upper and lower
diagrams respectively. In both it is assumed (and indicated) that red has a
higher value (e.g. of temperature) than blue and that the property being
transported in the channels therefore flows from red to blue. Channels are
contiguous if effective exchange is to occur (i.e. there can be no gap between
the channels).

There are three main types of flows in a spiral heat exchanger:

Counter-current Flow: Fluids flow in opposite directions. These are used for liquid-
liquid, condensing and gas cooling applications. Units are usually mounted vertically
when condensing vapour and mounted horizontally when handling high
concentrations of solids.
Spiral Flow/Cross Flow: One fluid is in spiral flow and the other in a cross flow.
Spiral flow passages are welded at each side for this type of spiral heat exchanger.
This type of flow is suitable for handling low density gas, which passes through the
cross flow, avoiding pressure loss. It can be used for liquid-liquid applications if one
liquid has a considerably greater flow rate than the other.
Distributed Vapour/Spiral flow: This design is that of a condenser, and is usually
mounted vertically. It is designed to cater for the sub-cooling of both condensate and
non-condensables. The coolant moves in a spiral and leaves via the top. Hot gases
that enter leave as condensate via the bottom outlet.

Applications

[edit]

The Spiral heat exchanger is good for applications such as pasteurization, digester
heating, heat recovery, pre-heating (see: recuperator), and effluent cooling. For sludge
treatment, SHEs are generally smaller than other types of heat exchangers.[citation needed]

These are used to transfer the heat.



Selection

[edit]

Due to the many variables involved, selecting optimal heat exchangers is challenging.
Hand calculations are possible, but many iterations are typically needed. As such, heat
exchangers are most often selected via computer programs, either by system designers,
who are typically engineers, or by equipment vendors.

To select an appropriate heat exchanger, the system designers (or equipment vendors)
would firstly consider the design limitations for each heat exchanger type. Though cost is
often the primary criterion, several other selection criteria are important:

High/low pressure limits
Thermal performance
Temperature ranges
Product mix (liquid/liquid, particulates or high-solids liquid)
Pressure drops across the exchanger
Fluid flow capacity
Cleanability, maintenance and repair
Materials required for construction
Ability and ease of future expansion
Material selection, such as copper, aluminium, carbon steel, stainless steel, nickel
alloys, ceramic, polymer, and titanium.[26][27]

Small-diameter coil technologies are becoming more popular in modern air conditioning
and refrigeration systems because they have better rates of heat transfer than
conventional sized condenser and evaporator coils with round copper tubes and aluminum
or copper fin that have been the standard in the HVAC industry. Small diameter coils can
withstand the higher pressures required by the new generation of environmentally friendlier
refrigerants. Two small diameter coil technologies are currently available for air
conditioning and refrigeration products: copper microgroove[28] and brazed aluminum
microchannel.[citation needed]

Choosing the right heat exchanger (HX) requires some knowledge of the different heat
exchanger types, as well as the environment where the unit must operate. Typically in the
manufacturing industry, several differing types of heat exchangers are used for just one
process or system to derive the final product. For example, a kettle HX for pre-heating, a
double pipe HX for the 'carrier' fluid and a plate and frame HX for final cooling. With
sufficient knowledge of heat exchanger types and operating requirements, an appropriate
selection can be made to optimise the process.[29]

Monitoring and maintenance

[edit]



Online monitoring of commercial heat exchangers is done by tracking the overall heat
transfer coefficient. The overall heat transfer coefficient tends to decline over time due to
fouling.

By periodically calculating the overall heat transfer coefficient from exchanger flow rates
and temperatures, the owner of the heat exchanger can estimate when cleaning the heat
exchanger is economically attractive.

Integrity inspection of plate and tubular heat exchanger can be tested in situ by the
conductivity or helium gas methods. These methods confirm the integrity of the plates or
tubes to prevent any cross contamination and the condition of the gaskets.

Mechanical integrity monitoring of heat exchanger tubes may be conducted through
Nondestructive methods such as eddy current testing.

Fouling

[edit]
Main article: Fouling
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A heat exchanger in a steam power station contaminated with macrofouling

Fouling occurs when impurities deposit on the heat exchange surface. Deposition of these
impurities can decrease heat transfer effectiveness significantly over time and are caused
by:

Low wall shear stress
Low fluid velocities
High fluid velocities
Reaction product solid precipitation
Precipitation of dissolved impurities due to elevated wall temperatures



The rate of heat exchanger fouling is determined by the rate of particle deposition less re-
entrainment/suppression. This model was originally proposed in 1959 by Kern and Seaton.

Crude Oil Exchanger Fouling. In commercial crude oil refining, crude oil is heated from
21 °C (70 °F) to 343 °C (649 °F) prior to entering the distillation column. A series of shell
and tube heat exchangers typically exchange heat between crude oil and other oil streams
to heat the crude to 260 °C (500 °F) prior to heating in a furnace. Fouling occurs on the
crude side of these exchangers due to asphaltene insolubility. The nature of asphaltene
solubility in crude oil was successfully modeled by Wiehe and Kennedy.[30] The
precipitation of insoluble asphaltenes in crude preheat trains has been successfully
modeled as a first order reaction by Ebert and Panchal[31] who expanded on the work of
Kern and Seaton.

Cooling Water Fouling. Cooling water systems are susceptible to fouling. Cooling water
typically has a high total dissolved solids content and suspended colloidal solids. Localized
precipitation of dissolved solids occurs at the heat exchange surface due to wall
temperatures higher than bulk fluid temperature. Low fluid velocities (less than 3 ft/s) allow
suspended solids to settle on the heat exchange surface. Cooling water is typically on the
tube side of a shell and tube exchanger because it's easy to clean. To prevent fouling,
designers typically ensure that cooling water velocity is greater than 0.9 m/s and bulk fluid
temperature is maintained less than 60 °C (140 °F). Other approaches to control fouling
control combine the "blind" application of biocides and anti-scale chemicals with periodic
lab testing.

Maintenance

[edit]

Plate and frame heat exchangers can be disassembled and cleaned periodically. Tubular
heat exchangers can be cleaned by such methods as acid cleaning, sandblasting, high-
pressure water jet, bullet cleaning, or drill rods.

In large-scale cooling water systems for heat exchangers, water treatment such as
purification, addition of chemicals, and testing, is used to minimize fouling of the heat
exchange equipment. Other water treatment is also used in steam systems for power
plants, etc. to minimize fouling and corrosion of the heat exchange and other equipment.

A variety of companies have started using water borne oscillations technology to prevent
biofouling. Without the use of chemicals, this type of technology has helped in providing a
low-pressure drop in heat exchangers.

Design and manufacturing regulations



[edit]

The design and manufacturing of heat exchangers has numerous regulations, which vary
according to the region in which they will be used.

Design and manufacturing codes include: ASME Boiler and Pressure Vessel Code (US);
PD 5500 (UK); BS 1566 (UK);[32] EN 13445 (EU); CODAP (French); Pressure Equipment
Safety Regulations 2016 (PER) (UK); Pressure Equipment Directive (EU); NORSOK
(Norwegian); TEMA;[33] API 12; and API 560.[citation needed]

In nature

[edit]

Humans

[edit]

The human nasal passages serve as a heat exchanger, with cool air being inhaled and
warm air being exhaled. Its effectiveness can be demonstrated by putting the hand in front
of the face and exhaling, first through the nose and then through the mouth. Air exhaled
through the nose is substantially cooler.[34][35] This effect can be enhanced with clothing,
by, for example, wearing a scarf over the face while breathing in cold weather.

In species that have external testes (such as human), the artery to the testis is surrounded
by a mesh of veins called the pampiniform plexus. This cools the blood heading to the
testes, while reheating the returning blood.

Birds, fish, marine mammals

[edit]

Image not found or type unknown

Counter-current exchange conservation circuit

Further information: Counter-current exchange in biological systems



"Countercurrent" heat exchangers occur naturally in the circulatory systems of fish, whales
and other marine mammals. Arteries to the skin carrying warm blood are intertwined with
veins from the skin carrying cold blood, causing the warm arterial blood to exchange heat
with the cold venous blood. This reduces the overall heat loss in cold water. Heat
exchangers are also present in the tongues of baleen whales as large volumes of water
flow through their mouths.[36][37] Wading birds use a similar system to limit heat losses
from their body through their legs into the water.

Carotid rete

[edit]

Carotid rete is a counter-current heat exchanging organ in some ungulates. The blood
ascending the carotid arteries on its way to the brain, flows via a network of vessels where
heat is discharged to the veins of cooler blood descending from the nasal passages. The
carotid rete allows Thomson's gazelle to maintain its brain almost 3 °C (5.4 °F) cooler than
the rest of the body, and therefore aids in tolerating bursts in metabolic heat production
such as associated with outrunning cheetahs (during which the body temperature exceeds
the maximum temperature at which the brain could function).[38] Humans with other
primates lack a carotid rete.[39]

In industry

[edit]

Heat exchangers are widely used in industry both for cooling and heating large scale
industrial processes. The type and size of heat exchanger used can be tailored to suit a
process depending on the type of fluid, its phase, temperature, density, viscosity,
pressures, chemical composition and various other thermodynamic properties.

In many industrial processes there is waste of energy or a heat stream that is being
exhausted, heat exchangers can be used to recover this heat and put it to use by heating a
different stream in the process. This practice saves a lot of money in industry, as the heat
supplied to other streams from the heat exchangers would otherwise come from an
external source that is more expensive and more harmful to the environment.

Heat exchangers are used in many industries, including:

Waste water treatment
Refrigeration
Wine and beer making
Petroleum refining
Nuclear power



In waste water treatment, heat exchangers play a vital role in maintaining optimal
temperatures within anaerobic digesters to promote the growth of microbes that remove
pollutants. Common types of heat exchangers used in this application are the double pipe
heat exchanger as well as the plate and frame heat exchanger.

In aircraft

[edit]

In commercial aircraft heat exchangers are used to take heat from the engine's oil system
to heat cold fuel.[40] This improves fuel efficiency, as well as reduces the possibility of
water entrapped in the fuel freezing in components.[41]

Current market and forecast

[edit]

Estimated at US$17.5 billion in 2021, the global demand of heat exchangers is expected to
experience robust growth of about 5% annually over the next years. The market value is
expected to reach US$27 billion by 2030. With an expanding desire for environmentally
friendly options and increased development of offices, retail sectors, and public buildings,
market expansion is due to grow.[42]

A model of a simple heat exchanger

[edit]

A simple heat exchange [43][44] might be thought of as two straight pipes with fluid flow,
which are thermally connected. Let the pipes be of equal length L, carrying fluids with heat
capacity \displaystyle C_iImage not found or type unknown (energy per unit mass per unit change in temperature) and let the mass flow
rate of the fluids through the pipes, both in the same direction, be \displaystyle j_iImage not found or type unknown (mass per unit time),
where the subscript i applies to pipe 1 or pipe 2.

Temperature profiles for the pipes are \displaystyle T_1(x)Image not found or type unknown and \displaystyle T_2(x)Image not found or type unknown where x is the distance along the
pipe. Assume a steady state, so that the temperature profiles are not functions of time.
Assume also that the only transfer of heat from a small volume of fluid in one pipe is to the
fluid element in the other pipe at the same position, i.e., there is no transfer of heat along a
pipe due to temperature differences in that pipe. By Newton's law of cooling the rate of
change in energy of a small volume of fluid is proportional to the difference in temperatures
between it and the corresponding element in the other pipe:

\displaystyle \frac du_1dt=\gamma (T_2-T_1)

Image not found or type unknown



\displaystyle \frac du_2dt=\gamma (T_1-T_2)

Image not found or type unknown

( this is for parallel flow in the same direction and opposite temperature gradients, but for
counter-flow heat exchange countercurrent exchange the sign is opposite in the second
equation in front of \displaystyle \gamma (T_1-T_2)Image not found or type unknown ), where \displaystyle u_i(x)Image not found or type unknown is the thermal energy per unit length and ?
is the thermal connection constant per unit length between the two pipes. This change in
internal energy results in a change in the temperature of the fluid element. The time rate of
change for the fluid element being carried along by the flow is:

\displaystyle \frac du_1dt=J_1\frac dT_1dx

Image not found or type unknown

\displaystyle \frac du_2dt=J_2\frac dT_2dx

Image not found or type unknown

where \displaystyle J_i=C_ij_iImage not found or type unknown is the "thermal mass flow rate". The differential equations governing the
heat exchanger may now be written as:

\displaystyle J_1\frac \partial T_1\partial x=\gamma (T_2-T_1)

Image not found or type unknown

\displaystyle J_2\frac \partial T_2\partial x=\gamma (T_1-T_2).

Image not found or type unknown

Since the system is in a steady state, there are no partial derivatives of temperature with
respect to time, and since there is no heat transfer along the pipe, there are no second
derivatives in x as is found in the heat equation. These two coupled first-order differential
equations may be solved to yield:

\displaystyle T_1=A-\frac Bk_1k\,e^-kx

Image not found or type unknown

\displaystyle T_2=A+\frac Bk_2k\,e^-kx

Image not found or type unknown

where \displaystyle k_1=\gamma /J_1Image not found or type unknown, \displaystyle k_2=\gamma /J_2Image not found or type unknown,

\displaystyle k=k_1+k_2Image not found or type unknown

(this is for parallel-flow, but for counter-flow the sign in front of \displaystyle k_2Image not found or type unknown is negative, so that if
\displaystyle k_2=k_1Image not found or type unknown, for the same "thermal mass flow rate" in both opposite directions, the gradient of
temperature is constant and the temperatures linear in position x with a constant difference
\displaystyle (T_2-T_1)Image not found or type unknown along the exchanger, explaining why the counter current design countercurrent
exchange is the most efficient )



and A and B are two as yet undetermined constants of integration. Let \displaystyle T_10Image not found or type unknown and \displaystyle T_20Image not found or type unknown be the
temperatures at x=0 and let \displaystyle T_1LImage not found or type unknown and \displaystyle T_2LImage not found or type unknown be the temperatures at the end of the pipe at
x=L. Define the average temperatures in each pipe as:

\displaystyle \overline T_1=\frac 1L\int _0^LT_1(x)dx

Image not found or type unknown

\displaystyle \overline T_2=\frac 1L\int _0^LT_2(x)dx.

Image not found or type unknown

Using the solutions above, these temperatures are:

\displaystyle T_10=A-\frac Bk_1k

Image not found or type unknown

\displaystyle T_20=A+\frac Bk_2k

Image not found or type unknown

\displaystyle T_1L=A-\frac Bk_1ke^-kL

Image not found or type unknown

\displaystyle T_2L=A+\frac Bk_2ke^-kL

Image not found or type unknown\displaystyle \overline T_1=A-\frac Bk_1k^2L(1-e^-kL)

Image not found or type unknown         
\displaystyle \overline T_2=A+\frac Bk_2k^2L(1-e^-kL).

Image not found or type unknown

Choosing any two of the temperatures above eliminates the constants of integration, letting
us find the other four temperatures. We find the total energy transferred by integrating the
expressions for the time rate of change of internal energy per unit length:

\displaystyle \frac dU_1dt=\int _0^L\frac du_1dt\,dx=J_1(T_1L-T_10)=\gamma L(\overline T_2-\overline T_1)

Image not found or type unknown

\displaystyle \frac dU_2dt=\int _0^L\frac du_2dt\,dx=J_2(T_2L-T_20)=\gamma L(\overline T_1-\overline T_2).

Image not found or type unknown

By the conservation of energy, the sum of the two energies is zero. The quantity 
\displaystyle \overline T_2-\overline T_1
Image not found or type unknown

is known as the Log mean temperature difference, and is a measure of the effectiveness of
the heat exchanger in transferring heat energy.

See also

[edit]
Architectural engineering
Chemical engineering
Cooling tower
Copper in heat exchangers
Heat pipe
Heat pump
Heat recovery ventilation
Jacketed vessel



Log mean temperature difference (LMTD)
Marine heat exchangers
Mechanical engineering
Micro heat exchanger
Moving bed heat exchanger
Packed bed and in particular Packed columns
Pumpable ice technology
Reboiler
Recuperator, or cross plate heat exchanger
Regenerator
Run around coil
Steam generator (nuclear power)
Surface condenser
Toroidal expansion joint
Thermosiphon
Thermal wheel, or rotary heat exchanger (including enthalpy wheel and desiccant
wheel)
Tube tool
Waste heat
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Heating, ventilation, and air conditioning
 



Fundamental
concepts

Air changes per hour
Bake-out
Building envelope
Convection
Dilution
Domestic energy consumption
Enthalpy
Fluid dynamics
Gas compressor
Heat pump and refrigeration cycle
Heat transfer
Humidity
Infiltration
Latent heat
Noise control
Outgassing
Particulates
Psychrometrics
Sensible heat
Stack effect
Thermal comfort
Thermal destratification
Thermal mass
Thermodynamics
Vapour pressure of water



Technology

Absorption-compression heat pump
Absorption refrigerator
Air barrier
Air conditioning
Antifreeze
Automobile air conditioning
Autonomous building
Building insulation materials
Central heating
Central solar heating
Chilled beam
Chilled water
Constant air volume (CAV)
Coolant
Cross ventilation
Dedicated outdoor air system (DOAS)
Deep water source cooling
Demand controlled ventilation (DCV)
Displacement ventilation
District cooling
District heating
Electric heating
Energy recovery ventilation (ERV)
Firestop
Forced-air
Forced-air gas
Free cooling
Heat recovery ventilation (HRV)
Hybrid heat
Hydronics
Ice storage air conditioning
Kitchen ventilation
Mixed-mode ventilation
Microgeneration
Passive cooling
Passive daytime radiative cooling
Passive house
Passive ventilation
Radiant heating and cooling
Radiant cooling
Radiant heating
Radon mitigation
Refrigeration
Renewable heat
Room air distribution
Solar air heat
Solar combisystem
Solar cooling
Solar heating
Thermal insulation
Thermosiphon
Underfloor air distribution
Underfloor heating
Vapor barrier
Vapor-compression refrigeration (VCRS)
Variable air volume (VAV)
Variable refrigerant flow (VRF)
Ventilation
Water heat recycling



Components

Air conditioner inverter
Air door
Air filter
Air handler
Air ionizer
Air-mixing plenum
Air purifier
Air source heat pump
Attic fan
Automatic balancing valve
Back boiler
Barrier pipe
Blast damper
Boiler
Centrifugal fan
Ceramic heater
Chiller
Condensate pump
Condenser
Condensing boiler
Convection heater
Compressor
Cooling tower
Damper
Dehumidifier
Duct
Economizer
Electrostatic precipitator
Evaporative cooler
Evaporator
Exhaust hood
Expansion tank
Fan
Fan coil unit
Fan filter unit
Fan heater
Fire damper
Fireplace
Fireplace insert
Freeze stat
Flue
Freon
Fume hood
Furnace
Gas compressor
Gas heater
Gasoline heater
Grease duct
Grille
Ground-coupled heat exchanger
Ground source heat pump
Heat exchanger
Heat pipe
Heat pump
Heating film
Heating system
HEPA
High efficiency glandless circulating pump
High-pressure cut-off switch
Humidifier
Infrared heater
Inverter compressor
Kerosene heater
Louver
Mechanical room
Oil heater
Packaged terminal air conditioner
Plenum space
Pressurisation ductwork
Process duct work
Radiator
Radiator reflector
Recuperator
Refrigerant
Register
Reversing valve
Run-around coil
Sail switch
Scroll compressor
Solar chimney
Solar-assisted heat pump
Space heater
Smoke canopy
Smoke damper
Smoke exhaust ductwork
Thermal expansion valve
Thermal wheel
Thermostatic radiator valve
Trickle vent
Trombe wall
TurboSwing
Turning vanes
Ultra-low particulate air (ULPA)
Whole-house fan
Windcatcher
Wood-burning stove
Zone valve



Measurement
and control

Air flow meter
Aquastat
BACnet
Blower door
Building automation
Carbon dioxide sensor
Clean air delivery rate (CADR)
Control valve
Gas detector
Home energy monitor
Humidistat
HVAC control system
Infrared thermometer
Intelligent buildings
LonWorks
Minimum efficiency reporting value (MERV)
Normal temperature and pressure (NTP)
OpenTherm
Programmable communicating thermostat
Programmable thermostat
Psychrometrics
Room temperature
Smart thermostat
Standard temperature and pressure (STP)
Thermographic camera
Thermostat
Thermostatic radiator valve

Professions,
trades,

and services

Architectural acoustics
Architectural engineering
Architectural technologist
Building services engineering
Building information modeling (BIM)
Deep energy retrofit
Duct cleaning
Duct leakage testing
Environmental engineering
Hydronic balancing
Kitchen exhaust cleaning
Mechanical engineering
Mechanical, electrical, and plumbing
Mold growth, assessment, and remediation
Refrigerant reclamation
Testing, adjusting, balancing



Industry
organizations

AHRI
AMCA
ASHRAE
ASTM International
BRE
BSRIA
CIBSE
Institute of Refrigeration
IIR
LEED
SMACNA
UMC

Health and safety

Indoor air quality (IAQ)
Passive smoking
Sick building syndrome (SBS)
Volatile organic compound (VOC)

See also

ASHRAE Handbook
Building science
Fireproofing
Glossary of HVAC terms
Warm Spaces
World Refrigeration Day
Template:Home automation
Template:Solar energy
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Aurora Reservoir
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Wings Over the Rockies Air & Space
Museum
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Driving Directions in Arapahoe County

Driving Directions From Mullen High School to Royal Supply South

https://www.google.com/maps/search/?api=1&query=Blue+Grama+Grass+Park&query_place_id=ChIJ5xTkIyiKbIcRCgcKmCn2ABs
https://www.google.com/maps/search/?api=1&query=The+Aurora+Highlands+North+Sculpture&query_place_id=ChIJUbRszkJnbIcRWcUNAbAqpfU
https://www.google.com/maps/search/?api=1&query=Molly+Brown+House+Museum&query_place_id=ChIJd8jaltR-bIcRrftppzqiBeY


Driving Directions From The Home Depot to Royal Supply South

Driving Directions From Regal River Point to Royal Supply South

https://www.google.com/maps/dir/Costco+Wholesale/Royal+Supply+South/@39.6447147,-
105.0062499,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJ1Zeuh22AbIcRudLyqije-
pQ!2m2!1d-
105.0062499!2d39.6447147!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-
105.0233105!2d39.6435918!3e0

https://www.google.com/maps/dir/Regal+River+Point/Royal+Supply+South/@39.652626,-
105.008644,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJJ40tUAqAbIcRVEizYRM3eV8!2m2!1d-
105.008644!2d39.652626!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-
105.0233105!2d39.6435918!3e2

https://www.google.com/maps/dir/Wells+Fargo+ATM/Royal+Supply+South/@39.6557491,-
105.0504563,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJUwi2ThmAa4cRFeyO_EIdT6Q!2m2!1d-
105.0504563!2d39.6557491!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-
105.0233105!2d39.6435918!3e1

https://www.google.com/maps/dir/King+Soopers+Pharmacy/Royal+Supply+South/@39.6546318,-
105.0511591,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJUwi2ThmAa4cRzGew6Rqx-
9M!2m2!1d-
105.0511591!2d39.6546318!1m5!1m1!1sChIJ06br1RqAbIcRAjyWXdlXZaw!2m2!1d-
105.0233105!2d39.6435918!3e3

Driving Directions From Meow Wolf Denver | Convergence Station to Royal Supply South

Driving Directions From Molly Brown House Museum to Royal Supply South

Driving Directions From History Colorado Center to Royal Supply South

Driving Directions From Molly Brown House Museum to Royal Supply South
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Reviews for Royal Supply South

Analyzing Space Limitations for Duct InstallationView GBP

Frequently Asked Questions

What are the typical space constraints found in mobile homes that can affect duct installation for an HVAC system?
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Mobile homes often have limited ceiling and wall cavities, reduced attic or crawl space, and
standardized dimensions which restrict the available space for running ducts. The structural
design might not easily accommodate larger ductwork needed for efficient airflow.

How can one determine the best ductwork size and layout for an HVAC system in a mobile home?

Conduct a Manual D calculation to evaluate heating and cooling loads, consider using flexible
or smaller diameter ducts, and create a layout plan that maximizes existing spaces like
underfloor areas or above-drop ceilings while maintaining efficiency.

What materials are recommended for duct installation in tight spaces of a mobile home?

Flexible ducts made from materials like lightweight aluminum or fiberglass with insulation are
preferred due to their adaptability in tight spaces. Additionally, using low-profile rectangular
ducts can help fit within confined areas.

How does one ensure proper airflow when dealing with restricted space for ductwork in a mobile home?

Ensure correct sizing of the HVAC unit to match the homes requirements, use high-efficiency
filters to reduce resistance, implement zoning if possible, and regularly inspect and clean
ducts to maintain optimal airflow despite spatial limitations.



Royal Supply Inc

Phone : +16362969959

City : Wichita

State : KS

Zip : 67216

Address : Unknown Address

Google Business Profile

Company Website : https://royal-durhamsupply.com/locations/wichita-kansas/

Sitemap

Privacy Policy

About Us

Follow us

Are there alternative solutions if standard duct installation is impractical due to severe space limitations in a mobile home?

Consider installing mini-split systems or portable units as alternatives. These options do not
require extensive ductwork and provide flexibility by allowing individualized temperature
control without requiring significant structural modifications.
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