Mobile Homes

ä

- Considering Weight Distribution on Mobile Home Roofs
 Considering Weight Distribution on Mobile Home Roofs Analyzing Space
 Limitations for Duct Installation Minimizing Vibrations through Effective
 Mounting Checking for Clearances near Windows and Doors Verifying
 Electrical Capacity for New Units Inspecting Crawl Spaces before Major
 Installations Protecting Exterior Components from Windy Conditions
 Resolving Access Issues in Narrow Hallways Planning Around Existing
 Plumbing or Gas Lines Prioritizing Safety in Confined Work Areas Ensuring
 Adequate Ventilation for Heat Pumps Mitigating Moisture Risks in Humid
- Comparing Basic and Extended Coverage Options
 Comparing Basic and Extended Coverage Options Reviewing Part
 Replacement Clauses in Detail Understanding Labor Inclusions in Contracts
 Assessing Multi year Agreements for Homeowners Outlining Limitations of
 Warranty Claims Inspecting Renewal Terms for Ongoing Coverage
 Checking Deductible Requirements for Repairs Estimating Future Costs
 through Contract Analysis Tracking Service Visits Outlined in Agreements
 Selecting Clauses that Cover Seasonal Tuneups Transferring Warranty
 Benefits to New Owners Planning Budget Strategies for Contract Renewals
- About Us

In today's consumer-driven society, purchasing products with a warranty offers peace of mind. It assures buyers that their investment is protected against potential defects or malfunctions. However, what happens when these products change hands? This is where the concept of warranty transferability becomes crucial. Thermostat settings should be adjusted seasonally for maximum efficiency **mobile home hvac systems prices** air purifier. Understanding the nuances of transferring warranty benefits to new owners can significantly impact both sellers and buyers in the marketplace.

At its core, a warranty serves as a promise from the manufacturer or seller, ensuring that a product will perform as advertised for a specified period. If it doesn't, the buyer is entitled to certain remedies such as repair, replacement, or refund. This assurance plays a significant role in consumer decision-making processes. Yet, when ownership changes-be it through resale, gifting, or inheritance-the question arises: do these benefits follow the product?

The answer largely depends on the specific terms outlined by the original manufacturer or seller. Some warranties are explicitly non-transferable; they are tied solely to the original purchaser. In such cases, once ownership changes hands, any associated warranty benefits become void. However, other warranties may be fully or partially transferable under certain conditions.

For sellers aiming to attract potential buyers in secondary markets-such as cars or electronic goods-a transferable warranty can be an enticing selling point. It not only enhances the product's perceived value but also demonstrates confidence in its durability and quality. On the flip side, for buyers navigating these secondary markets, understanding whether a warranty is transferable can influence their purchasing decisions and offer reassurance about future protection.

Misunderstanding or neglecting this aspect of warranties can lead to complications and disputes down the line. A buyer who assumes that a warranty automatically transfers might find themselves unexpectedly burdened with repair costs should something go wrong postpurchase.

Therefore, clear communication about warranty transferability is essential during transactions involving second-hand goods. Sellers should provide all relevant documentation and clarify whether any steps need to be taken to officially transfer warranties-such as registering with the manufacturer under new ownership.

Moreover, consumers should actively inquire about this before finalizing purchases and thoroughly review any documentation provided by sellers or manufacturers regarding terms and conditions related to warranties.

In conclusion, grasping the importance of understanding warranty transferability is vital for anyone involved in buying or selling pre-owned goods. For sellers looking to maximize their offerings' appeal and for buyers seeking secure investments without hidden pitfalls-it pays off immensely to be well-informed about how warranties operate beyond initial purchase scenarios. By doing so effectively lays groundwork for smoother transactions while safeguarding interests on both sides of sale agreements within ever-evolving global marketplaces today!

Impact of HVAC system installation on roof weight distribution —

- Overview of mobile home HVAC systems and their components
- Impact of HVAC system installation on roof weight distribution
- Considerations for maintaining structural integrity during HVAC installation
- Strategies for evenly distributing weight across the roof when adding or upgrading HVAC systems
- Potential risks of improper weight distribution on mobile home roofs and HVAC efficiency
- Guidelines for professional assessment and installation to ensure balanced weight distribution

When purchasing a pre-owned product, one of the most reassuring aspects can be the transfer of existing warranty benefits. This process not only ensures continued protection but also adds value to your purchase by safeguarding against potential defects or issues. Understanding how to verify and transfer these warranty benefits effectively is crucial for new owners.

Firstly, verifying existing warranty coverage requires meticulous attention to detail. The initial step involves acquiring all relevant documentation from the previous owner. This includes the original purchase receipt, which typically contains critical information such as the purchase date and serial number of the product. It's essential to confirm that these details align with what is registered in the manufacturer's system.

Next, contacting the manufacturer directly is a prudent approach. Most companies offer customer service lines or online portals specifically designed to handle warranty inquiries. By providing them with details like the serial number or model of your product, you can determine if there is an active warranty and understand its terms and conditions fully.

In some cases, manufacturers require a formal process to transfer warranties from one owner to another. This usually involves filling out a transfer form either online or via mail. Some companies might ask for proof of ownership transfer, such as a bill of sale, to validate this request. It's important to comply with any deadlines stipulated by the manufacturer regarding how soon after purchasing you must initiate this transfer.

During this process, gaining clarity on what exactly is covered under the warranty is vital. Warranties vary significantly in scope-some cover only specific parts or types of damage while others may offer comprehensive protection including labor costs for repairs. Certain warranties might also have exclusions based on usage conditions or modifications made by previous owners.

Additionally, understanding any remaining duration left on the warranty helps set realistic expectations for coverage timelines. If possible, consider extending it through available options provided by manufacturers for additional peace of mind.

Finally, ensure that all communications regarding this process are documented thoroughlykeep copies of emails exchanged with customer service representatives and any forms submitted during the transfer process. This serves as evidence should any discrepancies arise later regarding your entitlement to warranty services.

In conclusion, while transferring warranty benefits as a new owner can seem daunting initially, following these steps diligently ensures smooth verification and transition processes. Doing so not only protects your investment but also empowers you as an informed consumer aware of your entitlements under existing coverage policies-ultimately enhancing satisfaction with your newly acquired product.

Posted by on

Posted by on

Posted by on

Considerations for maintaining structural integrity during HVAC installation

When purchasing a product, especially one as significant as a vehicle or a home appliance, understanding the warranty conditions can be crucial. Warranties provide peace of mind by ensuring that any defects or issues within a specified period will be addressed by the manufacturer at no extra cost to the owner. However, life is unpredictable, and situations might arise where you need to transfer ownership of a product before its warranty expires. This brings us to an often overlooked yet essential aspect: the conditions and requirements for transferring warranty benefits to new owners.

Transferring warranty benefits is not always straightforward, as it depends on the terms set forth by the original manufacturer or seller. Some companies have stringent guidelines regarding transfers, while others might offer more lenient policies. Therefore, it's imperative for both the current and prospective owner to understand these stipulations thoroughly.

Typically, warranties are tied to either the original purchaser or the product itself. In cases where warranties are linked directly to the product, transferring them can be relatively simple. The new owner merely needs proof of purchase and possibly a formal notification to the company about the change in ownership. However, if warranties are associated with the original buyer, special procedures must be followed.

Most manufacturers require certain documentation and steps for a successful transfer. This usually includes providing proof of purchase, filling out specific forms provided by the company, and sometimes paying a nominal fee for administrative purposes. It's important for sellers to ensure all necessary paperwork is in order before completing any sale involving goods with transferable warranties.

Moreover, timelines play a crucial role in this process. Many companies impose deadlines within which transfers must occur post-purchase from the original owner. Missing these windows could result in forfeiting warranty rights altogether for subsequent owners. Therefore, it becomes vital for both parties involved in such transactions to act promptly.

There are also scenarios where certain components of a warranty may not carry over during transfer due to their nature or specific clauses outlined initially-for instance, limited-time promotions or extended warranties bought separately may not always be eligible for transfer unless stated otherwise.

In essence, comprehending these nuances helps prevent unexpected surprises down the line and ensures seamless continuity regarding coverage under new ownerships' terms without unnecessary disputes or loss of valuable protection services offered initially by manufacturers upon first purchase agreements made previously between them alongside prior holders now looking towards resale opportunities elsewhere further along timelines ahead eventually too! To summarize succinctly: knowledge truly becomes empowering here; knowing precisely what conditions apply when seeking out how best handle potential transfers surrounding existing coverage plans ensures smoother transitions overall benefiting everyone involved ultimately-as well-preparedness remains key unlocking full advantages possible throughout entire lifecycle usage periods enjoyed fully thereafter beyond just initial acquisitions alone!

Strategies for evenly distributing weight across the

roof when adding or upgrading HVAC systems

Transferring the warranty of a product to a new owner is a crucial process that ensures continued coverage and protection for the item in question. Whether it's a car, an appliance, or an electronic device, warranties provide peace of mind by guaranteeing repairs or replacements under certain conditions. When ownership changes hands, transferring these benefits becomes essential to maintain this reassurance.

The process begins with understanding the specific terms and conditions set by the manufacturer or warranty provider. Each company has its own policies regarding transferability; some make it straightforward while others may impose restrictions or require additional documentation. Generally, it involves notifying the warranty provider about the change in ownership and providing relevant details such as proof of purchase, original warranty documents, and information about both the current and new owners.

For vehicles, this process often includes filling out specific forms provided by either the dealership or manufacturer. These forms may require signatures from both parties involved in the transaction. In some cases, there might be a nominal fee associated with transferring the warranty to cover administrative costs.

Once all necessary paperwork is complete and submitted, it is important for the new owner to verify that their information has been updated correctly in the warranty provider's system. This step ensures that should any issues arise with the product, they will be able to claim repairs or replacements without unnecessary delays.

Transferring warranty benefits not only protects the investment for the new owner but also can enhance resale value for sellers. A transferable warranty adds credibility and assurance that buyers are purchasing something with guaranteed support behind it.

In conclusion, while transferring a warranty might seem like a minor administrative task amidst larger transactions like selling a vehicle or home appliance, its importance cannot be

overstated. It bridges trust between buyers and sellers and continues to provide security long after products exchange hands-a testament to responsible ownership and foresight in managing valuable assets.

Potential risks of improper weight distribution on mobile home roofs and HVAC efficiency

Transferring warranty benefits to new owners is a practical consideration in the resale of products such as vehicles, electronics, and appliances. However, this process is not without its potential challenges and common issues. Understanding these difficulties can help both sellers and buyers navigate the transfer more smoothly and ensure that the warranty benefits are preserved.

One of the primary challenges in transferring warranties is understanding the terms and conditions set by the manufacturer or original seller. Warranties often come with specific stipulations regarding their transferability. Some manufacturers may allow transfers only under certain conditions, such as within a specific time frame or after paying an administrative fee. Furthermore, there might be geographic restrictions or requirements for registering the transfer with the company, adding layers of complexity to what one might assume to be a straightforward process.

Documentation is another critical aspect that can pose challenges during warranty transfers. New owners must ensure they receive all necessary documents from the previous owner to facilitate a smooth transfer. This typically includes proof of purchase, original warranty documentation, and any service records if applicable. Missing paperwork can delay or even prevent the successful transfer of warranty benefits, leaving new owners without coverage for repairs or replacements. Additionally, differences in interpretation of what constitutes a valid claim under a transferred warranty can lead to disputes between new owners and manufacturers. For instance, manufacturers might argue that certain pre-existing conditions void the warranty or that improper maintenance by previous owners disqualifies future claims. To mitigate these risks, it is advisable for new owners to conduct thorough inspections before finalizing their purchase and ensure that maintenance has been performed according to manufacturer guidelines.

Another common issue arises from differing expectations regarding what a transferred warranty covers. New owners may assume they will receive full coverage identical to that enjoyed by the original owner; however, some warranties reduce coverage upon transfer or exclude specific components altogether. Therefore, it's essential for both parties involved in a sale to clearly understand and communicate what aspects of the product remain covered post-transfer.

Lastly, technological advancements can complicate warranty transfers in industries like automotive or electronics where products frequently evolve through software updates or version upgrades. New owners need assurance that such updates do not affect their eligibility for existing warranties - an area where clear communication with manufacturers becomes crucial.

In conclusion, while transferring warranty benefits offers valuable protection to new product owners against unexpected repair costs or defects, it comes with distinct challenges ranging from understanding complex terms to ensuring proper documentation and managing expectations about coverage scope. By being aware of these potential pitfalls ahead of time whether you're selling your used car or buying second-hand electronics - you enhance your ability not only to secure peace-of-mind but also maximize value from your investment over time.

Guidelines for professional assessment and installation to ensure balanced weight

distribution

When purchasing a product, whether it's a car, an appliance, or a piece of technology, the warranty is often seen as a crucial element of that purchase. A warranty not only serves as a promise of quality and reliability but also provides peace of mind in case something goes wrong. However, things can become slightly more complicated when ownership changes hands and there's a need to transfer the warranty benefits to new owners. In this context, maintaining the validity of transferred warranties becomes essential.

To begin with, understanding the terms and conditions stipulated by the manufacturer or seller is fundamental when transferring warranty benefits. Each company has its own set of rules regarding warranty transfers. Some manufacturers allow these transfers freely while others may impose certain restrictions or require specific actions for the transfer to be valid. Therefore, thoroughly reading and comprehending these terms is paramount.

Once you're aware of the requirements, proper documentation becomes your best ally in ensuring a smooth transition of warranty benefits. Typically, manufacturers will ask for proof of purchase or original receipts along with any other relevant documents like maintenance records. These documents serve as evidence that the product was maintained according to the manufacturer's guidelines which is often necessary for preserving the validity of the warranty after it has been transferred.

Furthermore, timely communication plays an important role in this process. Contacting the manufacturer or seller promptly upon deciding to transfer ownership helps avoid any lapses in coverage that might occur during delays. Inform them about your intention to transfer and provide all necessary details about both parties involved - you as the current owner and the prospective new owner who will assume responsibility for future claims under this warranty.

In addition to contacting manufacturers directly, registering products online (if applicable) can also facilitate easy updates regarding changes in ownership status while keeping all information up-to-date within their systems thus minimizing potential issues arising from outdated records causing disputes over claim eligibility later down line when needed most! Another critical aspect often overlooked involves adhering strictly towards scheduled maintenance routines outlined by original agreements since failure doing so could void existing protections altogether! This means ensuring regular servicing at authorized centers using genuine parts whenever replacements become necessary; thereby proving commitment towards maintaining optimal performance levels throughout duration remaining covered period post-transfer event itself took place initially between previous versus latest holders respectively involved therein too alike simultaneously amidst everything else happening surrounding same scenario overall collectively shared amongst everyone concerned here accordingly still ongoing onwards evermore henceforth indefinitely lasting forevermore afterwards thereafter ultimately enduring perpetually nonstop eternally likewise continuously unceasingly without end eventually finally conclusively summed up concisely briefly succinctly altogether encapsulated hereinabove stated heretofore mentioned earlier described previously noted already pointed out beforehand elaborated further elucidated amplified expanded upon clarified explained expounded illuminated illustrated demonstrated exemplified showcased highlighted accentuated emphasized underscored stressed reiterated referenced cited quoted paraphrased adapted borrowed incorporated integrated included assimilated blended fused combined merged unified harmonized coalesced amalgamated synthesized consolidated strengthened fortified reinforced bolstered augmented enhanced improved enriched refined polished perfected optimized maximized elevated uplifted raised heightened intensified magnified increased enlarged expanded extended broadened widened deepened thickened solidified stabilized secured anchored rooted grounded based founded established instituted inaugurated initiated commenced started begun embarked launched pioneered ventured explored discovered uncovered revealed exposed disclosed divulged unveiled unraveled deciphered decoded decrypted interpreted translated transcribed converted transformed altered changed modified adjusted revised updated upgraded advanced progressed evolved developed matured grown flourished thrived prospered succeeded triumphed achieved accomplished attained reached obtained acquired gained possessed owned held kept retained preserved maintained sustained continued persisted endured lasted survived weathered withstood overcame prevailed conquered dominated mastered controlled governed

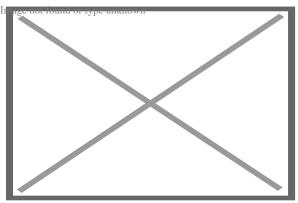
About Fan coil unit

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.

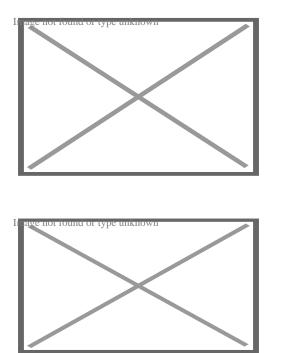
Find sources: "Fan coil unit" - news • newspapers • books • scholar • JSTOR (August 2014)

nage not

This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (August 2014) (Learn how and when to remove this message)



This article's tone or style may not reflect the encyclopedic tone used on Wikipedia. See Wikipedia's guide to writing better articles for suggestions. (August 2014) (Learn how and when to remove this message)


standards. You can help. The talk page may contain suggestions. *(August 2023)*

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)

(Learn how and when to remove this message)

Refrigerant based Fan-Coil Unit. Other variants utilize a chilled, or heated water loop for space cooling, or heating, respectively.

A fan coil unit (FCU), also known as a Vertical Fan Coil Unit (VFCU), is a device consisting of a heat exchanger (coil) and a fan. FCUs are commonly used in HVAC systems of residential, commercial, and industrial buildings that use ducted split air conditioning or central plant cooling. FCUs are typically connected to ductwork and a thermostat to regulate the temperature of one or more spaces and to assist the main air

handling unit for each space if used with chillers. The thermostat controls the fan speed and/or the flow of water or refrigerant to the heat exchanger using a control valve.

Due to their simplicity, flexibility, and easy maintenance, fan coil units can be more economical to install than ducted 100% fresh air systems (VAV) or central heating systems with air handling units or chilled beams. FCUs come in various configurations, including horizontal (ceiling-mounted) and vertical (floor-mounted), and can be used in a wide range of applications, from small residential units to large commercial and industrial buildings.

Noise output from FCUs, like any other form of air conditioning, depends on the design of the unit and the building materials surrounding it. Some FCUs offer noise levels as low as NR25 or NC25.

The output from an FCU can be established by looking at the temperature of the air entering the unit and the temperature of the air leaving the unit, coupled with the volume of air being moved through the unit. This is a simplistic statement, and there is further reading on sensible heat ratios and the specific heat capacity of air, both of which have an effect on thermal performance.

Design and operation

[edit]

Fan Coil Unit covers a range of products and will mean different things to users, specifiers, and installers in different countries and regions, particularly in relation to product size and output capability.

Fan Coil Unit falls principally into two main types: blow through and draw through. As the names suggest, in the first type the fans are fitted behind the heat exchanger, and in the other type the fans are fitted in front the coil such that they draw air through it. Draw through units are considered thermally superior, as ordinarily they make better use of the heat exchanger. However they are more expensive, as they require a chassis to hold the fans whereas a blow-through unit typically consists of a set of fans bolted straight to a coil.

A fan coil unit may be concealed or exposed within the room or area that it serves.

An exposed fan coil unit may be wall-mounted, freestanding or ceiling mounted, and will typically include an appropriate enclosure to protect and conceal the fan coil unit itself, with return air grille and supply air diffuser set into that enclosure to distribute the air.

A concealed fan coil unit will typically be installed within an accessible ceiling void or services zone. The return air grille and supply air diffuser, typically set flush into the

ceiling, will be ducted to and from the fan coil unit and thus allows a great degree of flexibility for locating the grilles to suit the ceiling layout and/or the partition layout within a space. It is quite common for the return air not to be ducted and to use the ceiling void as a return air plenum.

The coil receives hot or cold water from a central plant, and removes heat from or adds heat to the air through heat transfer. Traditionally fan coil units can contain their own internal thermostat, or can be wired to operate with a remote thermostat. However, and as is common in most modern buildings with a Building Energy Management System (BEMS), the control of the fan coil unit will be by a local digital controller or outstation (along with associated room temperature sensor and control valve actuators) linked to the BEMS via a communication network, and therefore adjustable and controllable from a central point, such as a supervisors head end computer.

Fan coil units circulate hot or cold water through a coil in order to condition a space. The unit gets its hot or cold water from a central plant, or mechanical room containing equipment for removing heat from the central building's closed-loop. The equipment used can consist of machines used to remove heat such as a chiller or a cooling tower and equipment for adding heat to the building's water such as a boiler or a commercial water heater.

Hydronic fan coil units can be generally divided into two types: Two-pipe fan coil units or four-pipe fan coil units. Two-pipe fan coil units have one supply and one return pipe. The supply pipe supplies either cold or hot water to the unit depending on the time of year. Four-pipe fan coil units have two supply pipes and two return pipes. This allows either hot or cold water to enter the unit at any given time. Since it is often necessary to heat and cool different areas of a building at the same time, due to differences in internal heat loss or heat gains, the four-pipe fan coil unit is most commonly used.

Fan coil units may be connected to piping networks using various topology designs, such as "direct return", "reverse return", or "series decoupled". See ASHRAE Handbook "2008 Systems & Equipment", Chapter 12.

Depending upon the selected chilled water temperatures and the relative humidity of the space, it's likely that the cooling coil will dehumidify the entering air stream, and as a by product of this process, it will at times produce a condensate which will need to be carried to drain. The fan coil unit will contain a purpose designed drip tray with drain connection for this purpose. The simplest means to drain the condensate from multiple fan coil units will be by a network of pipework laid to falls to a suitable point. Alternatively a condensate pump may be employed where space for such gravity pipework is limited.

The fan motors within a fan coil unit are responsible for regulating the desired heating and cooling output of the unit. Different manufacturers employ various methods for controlling the motor speed. Some utilize an AC transformer, adjusting the taps to modulate the power supplied to the fan motor. This adjustment is typically performed during the commissioning stage of building construction and remains fixed for the lifespan of the unit.

Alternatively, certain manufacturers employ custom-wound Permanent Split Capacitor (PSC) motors with speed taps in the windings. These taps are set to the desired speed levels for the specific design of the fan coil unit. To enable local control, a simple speed selector switch (Off-High-Medium-Low) is provided for the occupants of the room. This switch is often integrated into the room thermostat and can be manually set or automatically controlled by a digital room thermostat.

For automatic fan speed and temperature control, Building Energy Management Systems are employed. The fan motors commonly used in these units are typically AC Shaded Pole or Permanent Split Capacitor motors. Recent advancements include the use of brushless DC designs with electronic commutation. Compared to units equipped with asynchronous 3-speed motors, fan coil units utilizing brushless motors can reduce power consumption by up to 70%.^{[1}]

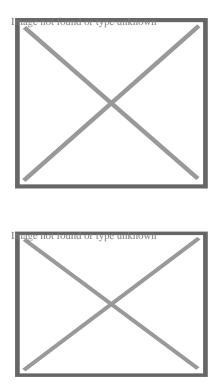
Fan coil units linked to ducted split air conditioning units use refrigerant in the cooling coil instead of chilled coolant and linked to a large condenser unit instead of a chiller. They might also be linked to liquid-cooled condenser units which use an intermediate coolant to cool the condenser using cooling towers.

DC/EC motor powered units

[edit]

These motors are sometimes called DC motors, sometimes EC motors and occasionally DC/EC motors. DC stands for direct current and EC stands for electronically commutated.

DC motors allow the speed of the fans within a fan coil unit to be controlled by means of a 0-10 Volt input control signal to the motor/s, the transformers and speed switches associated with AC fan coils are not required. Up to a signal voltage of 2.5 Volts (which may vary with different fan/motor manufacturers) the fan will be in a stopped condition but as the signal voltage is increased, the fan will seamlessly increase in speed until the maximum is reached at a signal Voltage of 10 Volts. fan coils will generally operate between approximately 4 Volts and 7.5 Volts because below 4 Volts the air volumes are ineffective and above 7.5 Volts the fan coil is likely to be too noisy for most commercial applications.


The 0-10 Volt signal voltage can be set via a simple potentiometer and left or the 0-10 Volt signal voltage can be delivered to the fan motors by the terminal controller on each of the Fan Coil Units. The former is very simple and cheap but the latter opens up the

opportunity to continuously alter the fan speed depending on various external conditions/influences. These conditions/criteria could be the 'real time' demand for either heating or cooling, occupancy levels, window switches, time clocks or any number of other inputs from either the unit itself, the Building Management System or both.

The reason that these DC Fan Coil Units are, despite their apparent relative complexity, becoming more popular is their improved energy efficiency levels compared to their AC motor-driven counterparts of only a few years ago. A straight swap, AC to DC, will reduce electrical consumption by 50% but applying Demand and Occupancy dependent fan speed control can take the savings to as much as 80%. In areas of the world where there are legally enforceable energy efficiency requirements for fan coils (such as the UK), DC Fan Coil Units are rapidly becoming the only choice.

Areas of use

[edit]

In high-rise buildings, fan coils may be vertically stacked, located one above the other from floor to floor and all interconnected by the same piping loop.

Fan coil units are an excellent delivery mechanism for hydronic chiller boiler systems in large residential and light commercial applications. In these applications the fan coil units are mounted in bathroom ceilings and can be used to provide unlimited comfort zones - with the ability to turn off unused areas of the structure to save energy.

Installation

[edit]

In high-rise residential construction, typically each fan coil unit requires a rectangular through-penetration in the concrete slab on top of which it sits. Usually, there are either 2 or 4 pipes made of ABS, steel or copper that go through the floor. The pipes are usually insulated with refrigeration insulation, such as acrylonitrile butadiene/polyvinyl chloride (AB/PVC) flexible foam (Rubatex or Armaflex brands) on all pipes, or at least on the chilled water lines to prevent condensate from forming.

Unit ventilator

[edit]

A unit ventilator is a fan coil unit that is used mainly in classrooms, hotels, apartments and condominium applications. A unit ventilator can be a wall mounted or ceiling hung cabinet, and is designed to use a fan to blow outside air across a coil, thus conditioning and ventilating the space which it is serving.

European market

[edit]

The Fan Coil is composed of one quarter of 2-pipe-units and three quarters of 4-pipeunits, and the most sold products are "with casing" (35%), "without casing" (28%), "cassette" (18%) and "ducted" (16%).[²]

The market by region was split in 2010 as follows:

Region	Sales Volume in units[²] Share		
Benelux	33 725	2.6%	
France	168 028	13.2%	
Germany	63 256	5.0%	
Greece	33 292	2.6%	
Italy	409 830	32.1%	
Poland	32 987	2.6%	
Portugal	22 957	1.8%	
Russia, Ukraine and CIS countries	87 054	6.8%	
Scandinavia and Baltic countries	39 124	3.1%	
Spain	91 575	7.2%	
Turkey	70 682	5.5%	

UK and Ireland	69 169	5.4%
Eastern Europe	153 847	12.1%

See also

[edit]

Wikimedia Commons has media related to Fan coil units.

- Thermal insulation
- $\circ \ \text{HVAC}$
- Construction
- Intumescent
- Firestop

References

[edit]

- 1. ^ "Fan Coil Unit". Heinen & Hopman. Retrieved 2023-08-30.
- 2. ^ a b "Home". Eurovent Market Intelligence.
 - o v
 - o t
 - **e**

Heating, ventilation, and air conditioning

- Air changes per hour
- Bake-out
- Building envelope
- \circ Convection
- \circ Dilution
- Domestic energy consumption
- Enthalpy
- Fluid dynamics
- $\circ~\mbox{Gas}$ compressor
- Heat pump and refrigeration cycle
- Heat transfer

concepts

- Infiltration
- Latent heat
- Noise control
- Outgassing
- Particulates
- \circ Psychrometrics
- Sensible heat
- Stack effect
- Thermal comfort
- Thermal destratification
- Thermal mass
- Thermodynamics
- Vapour pressure of water

- Absorption-compression heat pump
- Absorption refrigerator
- Air barrier
- Air conditioning
- Antifreeze
- Automobile air conditioning
- Autonomous building
- Building insulation materials
- Central heating
- Central solar heating
- Chilled beam
- Chilled water
- Constant air volume (CAV)
- Coolant
- Cross ventilation
- Dedicated outdoor air system (DOAS)
- $\circ\,$ Deep water source cooling
- Demand controlled ventilation (DCV)
- Displacement ventilation
- District cooling
- District heating
- Electric heating
- Energy recovery ventilation (ERV)
- Firestop
- Forced-air
- Forced-air gas
- Free cooling
- Heat recovery ventilation (HRV)
- Hybrid heat

Technology

- Hydronics
- Ice storage air conditioning
- Kitchen ventilation
- Mixed-mode ventilation
- Microgeneration
- $\circ\,$ Passive cooling
- Passive daytime radiative cooling
- $\circ~\mbox{Passive house}$
- Passive ventilation
- Radiant heating and cooling
- Radiant cooling
- Radiant heating
- Radon mitigation
- Refrigeration
- Renewable heat
- Room air distribution
- Solar air heat
- Solar combisystem
- Solar cooling

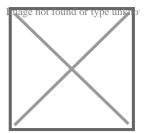
- Air conditioner inverter
- \circ Air door
- Air filter
- Air handler
- Air ionizer
- Air-mixing plenum
- Air purifier
- $\circ~$ Air source heat pump
- Attic fan
- Automatic balancing valve
- $\circ\,$ Back boiler
- Barrier pipe
- Blast damper
- Boiler
- Centrifugal fan
- Ceramic heater
- Chiller
- Condensate pump
- \circ Condenser
- Condensing boiler
- Convection heater
- Compressor
- $\circ~$ Cooling tower
- Damper
- Dehumidifier
- Duct
- Economizer
- Electrostatic precipitator
- Evaporative cooler
- Evaporator
- Exhaust hood
- Expansion tank
- \circ Fan
- Fan coil unit
- Fan filter unit
- Fan heater
- Fire damper
- \circ Fireplace
- Fireplace insert
- Freeze stat
- ∘ Flue
- Freon
- $\circ \ \text{Fume hood}$
- Furnace
- Gas compressor
- Gas heater
- Gasoline heater
- Grease duct

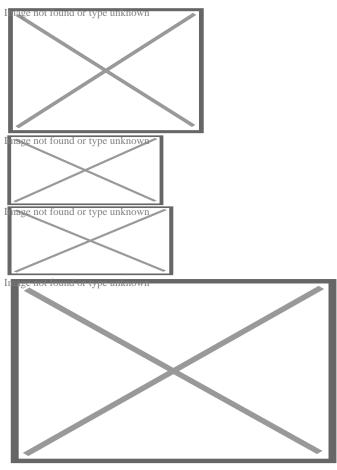
- Air flow meter
- Aquastat
- BACnet
- Blower door
- Building automation
- Carbon dioxide sensor
- Clean air delivery rate (CADR)
- Control valve
- Gas detector
- Home energy monitor
- Humidistat
- HVAC control system
- Infrared thermometer

Measurement and control

- Intelligent buildingsLonWorks
- Minimum efficiency reporting value (MERV)
- Normal temperature and pressure (NTP)
- OpenTherm
- Programmable communicating thermostat
- Programmable thermostat
- Psychrometrics
- Room temperature
- Smart thermostat
- Standard temperature and pressure (STP)
- Thermographic camera
- Thermostat
- Thermostatic radiator valve
- Architectural acoustics
- Architectural engineering
- Architectural technologist
- Building services engineering
- Building information modeling (BIM)
- Deep energy retrofit
- Duct cleaning

Professions, trades,


and services


- Duct leakage testing
- Environmental engineering
- Hydronic balancing
- Kitchen exhaust cleaning
- Mechanical engineering
- Mechanical, electrical, and plumbing
- $\circ\,$ Mold growth, assessment, and remediation
- Refrigerant reclamation
- Testing, adjusting, balancing

Industry organizations	 AHRI AMCA ASHRAE ASTM International BRE BSRIA CIBSE Institute of Refrigeration IIR LEED SMACNA UMC
Health and safety	 Indoor air quality (IAQ) Passive smoking Sick building syndrome (SBS) Volatile organic compound (VOC) ASHRAE Handbook Building science
See also	 Fireproofing Glossary of HVAC terms Warm Spaces World Refrigeration Day Template:Home automation Template:Solar energy

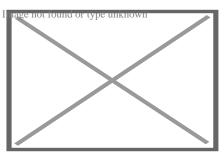
About Air conditioning

This article is about cooling of air. For the Curved Air album, see Air Conditioning (album). For a similar device capable of both cooling and heating, see heat pump. "a/c" redirects here. For the abbreviation used in banking and book-keeping, see Account (disambiguation). For other uses, see AC.

There are various types of air conditioners. Popular examples include: Window-mounted air conditioner (Suriname, 1955); Ceilingmounted cassette air conditioner (China, 2023); Wall-mounted air conditioner (Japan, 2020); Ceiling-mounted console (Also called ceiling suspended) air conditioner (China, 2023); and portable air conditioner (Vatican City, 2018).

Air conditioning, often abbreviated as **A/C** (US) or **air con** (UK),[¹] is the process of removing heat from an enclosed space to achieve a more comfortable interior temperature (sometimes referred to as 'comfort cooling') and in some cases also strictly controlling the humidity of internal air. Air conditioning can be achieved using a mechanical 'air conditioner' or by other methods, including passive cooling and ventilative cooling.[²][³] Air conditioning is a member of a family of systems and techniques that provide heating, ventilation, and air conditioning (HVAC).[⁴] Heat pumps are similar in many ways to air conditioners, but use a reversing valve to allow them both to heat and to cool an enclosed space.[⁵]

Air conditioners, which typically use vapor-compression refrigeration, range in size from small units used in vehicles or single rooms to massive units that can cool large buildings.[⁶] Air source heat pumps, which can be used for heating as well as cooling, are becoming increasingly common in cooler climates.


Air conditioners can reduce mortality rates due to higher temperature.^[7] According to the International Energy Agency (IEA) 1.6 billion air conditioning units were used globally in 2016.^[8] The United Nations called for the technology to be made more sustainable to mitigate climate change and for the use of alternatives, like passive cooling, evaporative cooling, selective shading, windcatchers, and better thermal insulation.

History

[edit]

Air conditioning dates back to prehistory.^[9] Double-walled living quarters, with a gap between the two walls to encourage air flow, were found in the ancient city of Hamoukar, in modern Syria.^[10] Ancient Egyptian buildings also used a wide variety of passive air-conditioning techniques.^[11] These became widespread from the Iberian Peninsula through North Africa, the Middle East, and Northern India.^[12]

Passive techniques remained widespread until the 20th century when they fell out of fashion and were replaced by powered air conditioning. Using information from engineering studies of traditional buildings, passive techniques are being revived and modified for 21st-century architectural designs.[¹³][¹²]

An array of air conditioner condenser units outside a commercial office building

Air conditioners allow the building's indoor environment to remain relatively constant, largely independent of changes in external weather conditions and internal heat loads. They also enable deep plan buildings to be created and have allowed people to live comfortably in hotter parts of the world.[¹⁴]

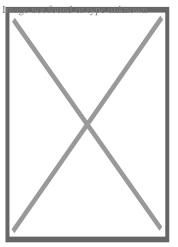
Development

[edit]

Preceding discoveries

[edit]

In 1558, Giambattista della Porta described a method of chilling ice to temperatures far below its freezing point by mixing it with potassium nitrate (then called "nitre") in his popular science book *Natural Magic*.[¹⁵][¹⁶][¹⁷] In 1620, Cornelis Drebbel demonstrated "Turning Summer into Winter" for James I of England, chilling part of the Great Hall of Westminster Abbey with an apparatus of troughs and vats.[¹⁸] Drebbel's contemporary Francis Bacon, like della Porta a believer in science communication, may not have been present at the demonstration, but in a book published later the same year, he described it as "experiment of artificial freezing" and said that "Nitre (or rather its spirit) is very cold, and hence nitre or salt when added to snow or ice intensifies the cold of the latter, the nitre by adding to its cold, but the salt by supplying activity to the cold of the snow."[¹⁵]


In 1758, Benjamin Franklin and John Hadley, a chemistry professor at the University of Cambridge, conducted experiments applying the principle of evaporation as a means to cool an object rapidly. Franklin and Hadley confirmed that the evaporation of highly volatile liquids (such as alcohol and ether) could be used to drive down the temperature of an object past the freezing point of water. They experimented with the bulb of a mercury-in-glass thermometer as their object. They used a bellows to speed up the evaporation. They lowered the temperature of the thermometer bulb down to ?14 °C (7 °F) while the ambient temperature was 18 °C (64 °F). Franklin noted that soon after they passed the freezing point of water 0 °C (32 °F), a thin film of ice formed on the surface of the thermometer's bulb and that the ice mass was about 6 mm (1?4 in) thick when they stopped the experiment upon reaching ?14 °C (7 °F). Franklin concluded: "From this experiment, one may see the possibility of freezing a man to death on a warm summer's day."[¹⁹]

The 19th century included many developments in compression technology. In 1820, English scientist and inventor Michael Faraday discovered that compressing and liquefying ammonia could chill air when the liquefied ammonia was allowed to evaporate.^[20] In 1842, Florida physician John Gorrie used compressor technology to create ice, which he used to cool air for his patients in his hospital in Apalachicola, Florida. He hoped to eventually use his ice-making machine to regulate the temperature of buildings.^[20]^[21] He envisioned centralized air conditioning that could cool entire cities. Gorrie was granted a patent in 1851,^[22] but following the death of his main backer, he was not able to realize his invention.^[23] In 1851, James Harrison created the first mechanical ice-making machine in Geelong, Australia, and was granted a patent for an ether vapor-compression refrigeration system in 1855 that produced three tons of ice

per day.^{[24}] In 1860, Harrison established a second ice company. He later entered the debate over competing against the American advantage of ice-refrigerated beef sales to the United Kingdom.^{[24}]

First devices

[edit]

Willis Carrier, who is credited with building the first modern electrical air conditioning unit

Electricity made the development of effective units possible. In 1901, American inventor Willis H. Carrier built what is considered the first modern electrical air conditioning unit.[25][26][27][28] In 1902, he installed his first air-conditioning system, in the Sackett-Wilhelms Lithographing & Publishing Company in Brooklyn, New York.[29] His invention controlled both the temperature and humidity, which helped maintain consistent paper dimensions and ink alignment at the printing plant. Later, together with six other employees, Carrier formed The Carrier Air Conditioning Company of America, a business that in 2020 employed 53,000 people and was valued at \$18.6 billion.[30][31]

In 1906, Stuart W. Cramer of Charlotte, North Carolina, was exploring ways to add moisture to the air in his textile mill. Cramer coined the term "air conditioning" in a patent claim which he filed that year, where he suggested that air conditioning was analogous to "water conditioning", then a well-known process for making textiles easier to process.[³²] He combined moisture with ventilation to "condition" and change the air in the factories; thus, controlling the humidity that is necessary in textile plants. Willis Carrier adopted the term and incorporated it into the name of his company.[³³]

Domestic air conditioning soon took off. In 1914, the first domestic air conditioning was installed in Minneapolis in the home of Charles Gilbert Gates. It is, however, possible that the considerable device (c. 2.1 m \times 1.8 m \times 6.1 m; 7 ft \times 6 ft \times 20 ft) was never

used, as the house remained uninhabited[²⁰] (Gates had already died in October 1913.)

In 1931, H.H. Schultz and J.Q. Sherman developed what would become the most common type of individual room air conditioner: one designed to sit on a window ledge. The units went on sale in 1932 at US\$10,000 to \$50,000 (the equivalent of \$200,000 to \$1,100,000 in 2023.)[²⁰] A year later, the first air conditioning systems for cars were offered for sale.[³⁴] Chrysler Motors introduced the first practical semi-portable air conditioning unit in 1935,[³⁵] and Packard became the first automobile manufacturer to offer an air conditioning unit in its cars in 1939.[³⁶]

Further development

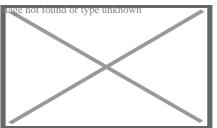
[edit]

Innovations in the latter half of the 20th century allowed more ubiquitous air conditioner use. In 1945, Robert Sherman of Lynn, Massachusetts, invented a portable, in-window air conditioner that cooled, heated, humidified, dehumidified, and filtered the air.[³⁷] The first inverter air conditioners were released in 1980–1981.[³⁸][³⁹]

In 1954, Ned Cole, a 1939 architecture graduate from the University of Texas at Austin, developed the first experimental "suburb" with inbuilt air conditioning in each house. 22 homes were developed on a flat, treeless track in northwest Austin, Texas, and the community was christened the 'Austin Air-Conditioned Village.' The residents were subjected to a year-long study of the effects of air conditioning led by the nation's premier air conditioning companies, builders, and social scientists. In addition, researchers from UT's Health Service and Psychology Department studied the effects on the "artificially cooled humans." One of the more amusing discoveries was that each family reported being troubled with scorpions, the leading theory being that scorpions sought cool, shady places. Other reported changes in lifestyle were that mothers baked more, families ate heavier foods, and they were more apt to choose hot drinks.[⁴⁰][⁴¹]

Air conditioner adoption tends to increase above around \$10,000 annual household income in warmer areas.[⁴²] Global GDP growth explains around 85% of increased air condition adoption by 2050, while the remaining 15% can be explained by climate change.[⁴²]

As of 2016 an estimated 1.6 billion air conditioning units were used worldwide, with over half of them in China and USA, and a total cooling capacity of 11,675 gigawatts.[⁸][⁴³] The International Energy Agency predicted in 2018 that the number of air conditioning units would grow to around 4 billion units by 2050 and that the total cooling capacity would grow to around 23,000 GW, with the biggest increases in India and China.[⁸] Between 1995 and 2004, the proportion of urban households in China with air conditioners increased from 8% to 70%.[⁴⁴] As of 2015, nearly 100 million homes, or


about 87% of US households, had air conditioning systems.[⁴⁵] In 2019, it was estimated that 90% of new single-family homes constructed in the US included air conditioning (ranging from 99% in the South to 62% in the West).[⁴⁶][⁴⁷]

Operation

[edit]

Operating principles

[edit] Main article: Vapor-compression refrigeration

A simple stylized diagram of the refrigeration cycle: 1) condensing coil, 2) expansion valve, 3) evaporator coil, 4) compressor

Cooling in traditional air conditioner systems is accomplished using the vaporcompression cycle, which uses a refrigerant's forced circulation and phase change between gas and liquid to transfer heat.[⁴⁸][⁴⁹] The vapor-compression cycle can occur within a unitary, or packaged piece of equipment; or within a chiller that is connected to terminal cooling equipment (such as a fan coil unit in an air handler) on its evaporator side and heat rejection equipment such as a cooling tower on its condenser side. An air source heat pump shares many components with an air conditioning system, but includes a reversing valve, which allows the unit to be used to heat as well as cool a space.[⁵⁰]

Air conditioning equipment will reduce the absolute humidity of the air processed by the system if the surface of the evaporator coil is significantly cooler than the dew point of the surrounding air. An air conditioner designed for an occupied space will typically achieve a 30% to 60% relative humidity in the occupied space.[⁵¹]

Most modern air-conditioning systems feature a dehumidification cycle during which the compressor runs. At the same time, the fan is slowed to reduce the evaporator temperature and condense more water. A dehumidifier uses the same refrigeration cycle but incorporates both the evaporator and the condenser into the same air path; the air first passes over the evaporator coil, where it is cooled[⁵²] and dehumidified before passing over the condenser coil, where it is warmed again before it is released back into the room.[[]*citation needed*]

Free cooling can sometimes be selected when the external air is cooler than the internal air. Therefore, the compressor does not need to be used, resulting in high cooling efficiencies for these times. This may also be combined with seasonal thermal energy storage.[⁵³]

Heating

[edit] Main article: Heat pump

Some air conditioning systems can reverse the refrigeration cycle and act as an air source heat pump, thus heating instead of cooling the indoor environment. They are also commonly referred to as "reverse cycle air conditioners". The heat pump is significantly more energy-efficient than electric resistance heating, because it moves energy from air or groundwater to the heated space and the heat from purchased electrical energy. When the heat pump is in heating mode, the indoor evaporator coil switches roles and becomes the condenser coil, producing heat. The outdoor condenser unit also switches roles to serve as the evaporator and discharges cold air (colder than the ambient outdoor air).

Most air source heat pumps become less efficient in outdoor temperatures lower than 4 °C or 40 °F.[⁵⁴] This is partly because ice forms on the outdoor unit's heat exchanger coil, which blocks air flow over the coil. To compensate for this, the heat pump system must temporarily switch back into the regular air conditioning mode to switch the outdoor evaporator coil *back* to the condenser coil, to heat up and defrost. Therefore, some heat pump systems will have electric resistance heating in the indoor air path that is activated only in this mode to compensate for the temporary indoor air cooling, which would otherwise be uncomfortable in the winter.

Newer models have improved cold-weather performance, with efficient heating capacity down to ?14 °F (?26 °C).[⁵⁵][⁵⁴][⁵⁶] However, there is always a chance that the humidity that condenses on the heat exchanger of the outdoor unit could freeze, even in models that have improved cold-weather performance, requiring a defrosting cycle to be performed.

The icing problem becomes much more severe with lower outdoor temperatures, so heat pumps are sometimes installed in tandem with a more conventional form of heating, such as an electrical heater, a natural gas, heating oil, or wood-burning fireplace or central heating, which is used instead of or in addition to the heat pump during harsher winter temperatures. In this case, the heat pump is used efficiently during milder temperatures, and the system is switched to the conventional heat source when the outdoor temperature is lower.

Performance

[edit]

Main articles: coefficient of performance, Seasonal energy efficiency ratio, and European seasonal energy efficiency ratio

The coefficient of performance (COP) of an air conditioning system is a ratio of useful heating or cooling provided to the work required.[⁵⁷][⁵⁸] Higher COPs equate to lower operating costs. The COP usually exceeds 1; however, the exact value is highly dependent on operating conditions, especially absolute temperature and relative temperature between sink and system, and is often graphed or averaged against expected conditions.[⁵⁹] Air conditioner equipment power in the U.S. is often described in terms of "tons of refrigeration", with each approximately equal to the cooling power of one short ton (2,000 pounds (910 kg) of ice melting in a 24-hour period. The value is equal to 12,000 BTU_{IT} per hour, or 3,517 watts.[⁶⁰] Residential central air systems are usually from 1 to 5 tons (3.5 to 18 kW) in capacity.[[]*citation needed*]

The efficiency of air conditioners is often rated by the seasonal energy efficiency ratio (SEER), which is defined by the Air Conditioning, Heating and Refrigeration Institute in its 2008 standard AHRI 210/240, *Performance Rating of Unitary Air-Conditioning and Air-Source Heat Pump Equipment*.[⁶¹] A similar standard is the European seasonal energy efficiency ratio (ESEER).[[]*citation needed*[]]

Efficiency is strongly affected by the humidity of the air to be cooled. Dehumidifying the air before attempting to cool it can reduce subsequent cooling costs by as much as 90 percent. Thus, reducing dehumidifying costs can materially affect overall air conditioning costs.[⁶²]

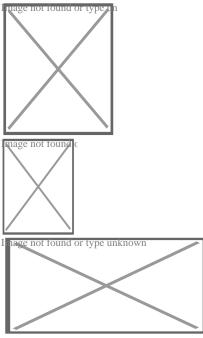
Control system

[edit]

Wireless remote control

[edit] Main articles: Remote control and Infrared blaster

A wireless remote


The infrared receiver on the air conditioner

This type of controller uses an infrared LED to relay commands from a remote control to the air conditioner. The output of the infrared LED (like that of any infrared remote) is invisible to the human eye because its wavelength is beyond the range of visible light (940 nm). This system is commonly used on mini-split air conditioners because it is simple and portable. Some window and ducted central air conditioners uses it as well.

Wired controller

[edit] Main article: Thermostat

Several wired controllers (Indonesia, 2024)

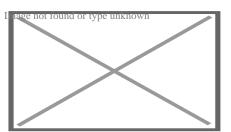
A wired controller, also called a "wired thermostat," is a device that controls an air conditioner by switching heating or cooling on or off. It uses different sensors to measure temperatures and actuate control operations. Mechanical thermostats commonly use bimetallic strips, converting a temperature change into mechanical displacement, to actuate control of the air conditioner. Electronic thermostats, instead, use a thermistor or other semiconductor sensor, processing temperature change as electronic signals to control the air conditioner.

These controllers are usually used in hotel rooms because they are permanently installed into a wall and hard-wired directly into the air conditioner unit, eliminating the need for batteries.

Types

[edit]

Types	Typical Capacity*	Air supply	Mounting	Typical application
Mini-split	small – large	Direct	Wall	Residential
Window	very small – small	Direct	Window	Residential
Portable	very small – small	Direct / Ducted	Floor	Residential, remote areas


Ducted (individual)	small – very large	Ducted	Ceiling	Residential, commercial
Ducted (central)	medium – very large	Ducted	Ceiling	Residential, commercial
Ceiling suspended	medium – large	Direct	Ceiling	Commercial
Cassette	medium – large	Direct / Ducted	Ceiling	Commercial
Floor standing	medium – large	Direct / Ducted	Floor	Commercial
Packaged	very large	Direct / Ducted	Floor	Commercial
Packaged RTU (Rooftop Unit)	very large	Ducted	Rooftop	Commercial

* where the typical capacity is in kilowatt as follows:

- very small: <1.5 kW
- small: 1.5–3.5 kW
- medium: 4.2–7.1 kW
- large: 7.2–14 kW
- very large: >14 kW

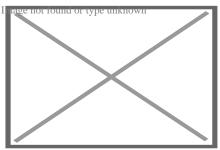
Mini-split and multi-split systems

[edit]

Evaporator, indoor unit, or terminal, side of a ductless split-type air conditioner

Ductless systems (often mini-split, though there are now ducted mini-split) typically supply conditioned and heated air to a single or a few rooms of a building, without ducts and in a decentralized manner.^[63] Multi-zone or multi-split systems are a common application of ductless systems and allow up to eight rooms (zones or locations) to be conditioned independently from each other, each with its indoor unit and simultaneously from a single outdoor unit.

The first mini-split system was sold in 1961 by Toshiba in Japan, and the first wallmounted mini-split air conditioner was sold in 1968 in Japan by Mitsubishi Electric, where small home sizes motivated their development. The Mitsubishi model was the first air conditioner with a cross-flow fan. [64][65][66] In 1969, the first mini-split air conditioner was sold in the US.[⁶⁷] Multi-zone ductless systems were invented by Daikin in 1973, and variable refrigerant flow systems (which can be thought of as larger multi-split systems) were also invented by Daikin in 1982. Both were first sold in Japan.^{[68}] Variable refrigerant flow systems when compared with central plant cooling from an air handler, eliminate the need for large cool air ducts, air handlers, and chillers; instead cool refrigerant is transported through much smaller pipes to the indoor units in the spaces to be conditioned, thus allowing for less space above dropped ceilings and a lower structural impact, while also allowing for more individual and independent temperature control of spaces. The outdoor and indoor units can be spread across the building.⁶⁹] Variable refrigerant flow indoor units can also be turned off individually in unused spaces. *citation needed* The lower start-up power of VRF's DC inverter compressors and their inherent DC power requirements also allow VRF solar-powered heat pumps to be run using DC-providing solar panels.


Ducted central systems

[edit]

Split-system central air conditioners consist of two heat exchangers, an outside unit (the condenser) from which heat is rejected to the environment and an internal heat exchanger (the evaporator, or Fan Coil Unit, FCU) with the piped refrigerant being circulated between the two. The FCU is then connected to the spaces to be cooled by ventilation ducts.⁷⁰] Floor standing air conditioners are similar to this type of air conditioner but sit within spaces that need cooling.

Central plant cooling

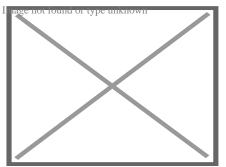
[edit] See also: Chiller

Industrial air conditioners on top of the shopping mall Passage in Linz, Austria

Large central cooling plants may use intermediate coolant such as chilled water pumped into air handlers or fan coil units near or in the spaces to be cooled which then duct or deliver cold air into the spaces to be conditioned, rather than ducting cold air directly to these spaces from the plant, which is not done due to the low density and heat capacity of air, which would require impractically large ducts. The chilled water is cooled by chillers in the plant, which uses a refrigeration cycle to cool water, often transferring its heat to the atmosphere even in liquid-cooled chillers through the use of cooling towers. Chillers may be air- or liquid-cooled.[⁷¹][⁷²]

Portable units

[edit]


A portable system has an indoor unit on wheels connected to an outdoor unit via flexible pipes, similar to a permanently fixed installed unit (such as a ductless split air conditioner).

Hose systems, which can be *monoblock* or *air-to-air*, are vented to the outside via air ducts. The *monoblock* type collects the water in a bucket or tray and stops when full. The *air-to-air* type re-evaporates the water, discharges it through the ducted hose, and can run continuously. Many but not all portable units draw indoor air and expel it outdoors through a single duct, negatively impacting their overall cooling efficiency.

Many portable air conditioners come with heat as well as a dehumidification function.⁷³]

Window unit and packaged terminal

[edit]

Through-the-wall PTAC units, University Motor Inn, Philadelphia

Main article: Packaged terminal air conditioner

The packaged terminal air conditioner (PTAC), through-the-wall, and window air conditioners are similar. These units are installed on a window frame or on a wall

opening. The unit usually has an internal partition separating its indoor and outdoor sides, which contain the unit's condenser and evaporator, respectively. PTAC systems may be adapted to provide heating in cold weather, either directly by using an electric strip, gas, or other heaters, or by reversing the refrigerant flow to heat the interior and draw heat from the exterior air, converting the air conditioner into a heat pump. They may be installed in a wall opening with the help of a special sleeve on the wall and a custom grill that is flush with the wall and window air conditioners can also be installed in a window, but without a custom grill.⁷⁴]

Packaged air conditioner

[edit]

Packaged air conditioners (also known as self-contained units)[⁷⁵][⁷⁶] are central systems that integrate into a single housing all the components of a split central system, and deliver air, possibly through ducts, to the spaces to be cooled. Depending on their construction they may be outdoors or indoors, on roofs (rooftop units),[⁷⁷][⁷⁸] draw the air to be conditioned from inside or outside a building and be water or air-cooled. Often, outdoor units are air-cooled while indoor units are liquid-cooled using a cooling tower.[⁷⁰][⁷⁹][⁸⁰][⁸¹][⁸²][⁸³]

Types of compressors

[edit]

Compressor types	Common applications	Typical capacity	Efficiency	Durability	Repairability
Reciprocating	Refrigerator, Walk-in freezer, portable air conditioners	small – large	very low (small capacity)	very low	medium
			medium (large capacity)		
Rotary vane	Residential mini splits	small	low	low	easy
Scroll	Commercial and central systems, VRF	medium	medium	medium	easy
Rotary screw	Commercial chiller	medium – large	medium	medium	hard
Centrifugal	Commercial chiller	very large	medium	high	hard

Maglev	Commercial chiller	very large	high
Centrifugal	Commercial crimer		

Reciprocating

[edit]

Main article: Reciprocating compressor

This compressor consists of a crankcase, crankshaft, piston rod, piston, piston ring, cylinder head and valves. [citation needed]

Scroll

[edit]

Main article: Scroll compressor

This compressor uses two interleaving scrolls to compress the refrigerant.^{[84}] it consists of one fixed and one orbiting scrolls. This type of compressor is more efficient because it has 70 percent less moving parts than a reciprocating compressor. [[]*citation needed*[]]

Screw

[edit] Main article: Rotary-screw compressor

This compressor use two very closely meshing spiral rotors to compress the gas. The gas enters at the suction side and moves through the threads as the screws rotate. The meshing rotors force the gas through the compressor, and the gas exits at the end of the screws. The working area is the inter-lobe volume between the male and female rotors. It is larger at the intake end, and decreases along the length of the rotors until the exhaust port. This change in volume is the compression. ^I*citation needed*^I

Capacity modulation technologies

[edit]

There are several ways to modulate the cooling capacity in refrigeration or air conditioning and heating systems. The most common in air conditioning are: on-off cycling, hot gas bypass, use or not of liquid injection, manifold configurations of multiple compressors, mechanical modulation (also called digital), and inverter technology. [citation need

Hot gas bypass

[edit]

Hot gas bypass involves injecting a quantity of gas from discharge to the suction side. The compressor will keep operating at the same speed, but due to the bypass, the refrigerant mass flow circulating with the system is reduced, and thus the cooling capacity. This naturally causes the compressor to run uselessly during the periods when the bypass is operating. The turn down capacity varies between 0 and 100%.[⁸⁵]

Manifold configurations

[edit]

Several compressors can be installed in the system to provide the peak cooling capacity. Each compressor can run or not in order to stage the cooling capacity of the unit. The turn down capacity is either 0/33/66 or 100% for a trio configuration and either 0/50 or 100% for a tandem. [citation needed]

Mechanically modulated compressor

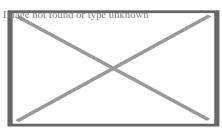
[edit]

This internal mechanical capacity modulation is based on periodic compression process with a control valve, the two scroll set move apart stopping the compression for a given time period. This method varies refrigerant flow by changing the average time of compression, but not the actual speed of the motor. Despite an excellent turndown ratio – from 10 to 100% of the cooling capacity, mechanically modulated scrolls have high energy consumption as the motor continuously runs. [citation needed]

Variable-speed compressor

[edit]

Main article: Inverter compressor


This system uses a variable-frequency drive (also called an Inverter) to control the speed of the compressor. The refrigerant flow rate is changed by the change in the speed of the compressor. The turn down ratio depends on the system configuration and manufacturer. It modulates from 15 or 25% up to 100% at full capacity with a single inverter from 12 to 100% with a hybrid tandem. This method is the most efficient way to modulate an air conditioner's capacity. It is up to 58% more efficient than a fixed speed system. *[citation needed]*

Impact

[edit]

Health effects

[edit]

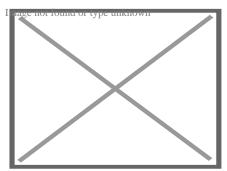
Rooftop condenser unit fitted on top of an Osaka Municipal Subway 10 series subway carriage. Air conditioning has become increasingly prevalent on public transport vehicles as a form of climate control, and to ensure passenger comfort and drivers' occupational safety and health.

In hot weather, air conditioning can prevent heat stroke, dehydration due to excessive sweating, electrolyte imbalance, kidney failure, and other issues due to hyperthermia. [⁸][86] Heat waves are the most lethal type of weather phenomenon in the United States.[87][88] A 2020 study found that areas with lower use of air conditioning correlated with higher rates of heat-related mortality and hospitalizations.[89] The August 2003 France heatwave resulted in approximately 15,000 deaths, where 80% of the victims were over 75 years old. In response, the French government required all retirement homes to have at least one air-conditioned room at 25 °C (77 °F) per floor during heatwaves.[8]

Air conditioning (including filtration, humidification, cooling and disinfection) can be used to provide a clean, safe, hypoallergenic atmosphere in hospital operating rooms and other environments where proper atmosphere is critical to patient safety and well-being. It is sometimes recommended for home use by people with allergies, especially mold.[90][91] However, poorly maintained water cooling towers can promote the growth and spread of microorganisms such as *Legionella pneumophila*, the infectious agent responsible for Legionnaires' disease. As long as the cooling tower is kept clean (usually by means of a chlorine treatment), these health hazards can be avoided or reduced. The state of New York has codified requirements for registration, maintenance, and testing of cooling towers to protect against Legionella.[92]

Economic effects

[edit]


First designed to benefit targeted industries such as the press as well as large factories, the invention quickly spread to public agencies and administrations with studies with claims of increased productivity close to 24% in places equipped with air conditioning.[93]

Air conditioning caused various shifts in demography, notably that of the United States starting from the 1970s. In the US, the birth rate was lower in the spring than during other seasons until the 1970s but this difference then declined since then.[⁹⁴] As of 2007, the Sun Belt contained 30% of the total US population while it was inhabited by 24% of Americans at the beginning of the 20th century.[⁹⁵] Moreover, the summer mortality rate in the US, which had been higher in regions subject to a heat wave during the summer, also evened out.[⁷]

The spread of the use of air conditioning acts as a main driver for the growth of global demand of electricity.[⁹⁶] According to a 2018 report from the International Energy Agency (IEA), it was revealed that the energy consumption for cooling in the United States, involving 328 million Americans, surpasses the combined energy consumption of 4.4 billion people in Africa, Latin America, the Middle East, and Asia (excluding China).[⁸] A 2020 survey found that an estimated 88% of all US households use AC, increasing to 93% when solely looking at homes built between 2010 and 2020.[⁹⁷]

Environmental effects

[edit]

Air conditioner farm in the facade of a building in Singapore

Space cooling including air conditioning accounted globally for 2021 terawatt-hours of energy usage in 2016 with around 99% in the form of electricity, according to a 2018 report on air-conditioning efficiency by the International Energy Agency.^[8] The report predicts an increase of electricity usage due to space cooling to around 6200 TWh by 2050,^[8]^[98] and that with the progress currently seen, greenhouse gas emissions attributable to space cooling will double: 1,135 million tons (2016) to 2,070 million tons.^[8] There is some push to increase the energy efficiency of air conditioners. United Nations Environment Programme (UNEP) and the IEA found that if air conditioners

could be twice as effective as now, 460 billion tons of GHG could be cut over 40 years.[⁹⁹] The UNEP and IEA also recommended legislation to decrease the use of hydrofluorocarbons, better building insulation, and more sustainable temperature-controlled food supply chains going forward.[⁹⁹]

Refrigerants have also caused and continue to cause serious environmental issues, including ozone depletion and climate change, as several countries have not yet ratified the Kigali Amendment to reduce the consumption and production of hydrofluorocarbons. [¹⁰⁰] CFCs and HCFCs refrigerants such as R-12 and R-22, respectively, used within air conditioners have caused damage to the ozone layer,[¹⁰¹] and hydrofluorocarbon refrigerants such as R-410A and R-404A, which were designed to replace CFCs and HCFCs, are instead exacerbating climate change.[¹⁰²] Both issues happen due to the venting of refrigerant to the atmosphere, such as during repairs. HFO refrigerants, used in some if not most new equipment, solve both issues with an ozone damage potential (ODP) of zero and a much lower global warming potential (GWP) in the single or double digits vs. the three or four digits of hydrofluorocarbons.[¹⁰³]

Hydrofluorocarbons would have raised global temperatures by around 0.3–0.5 °C (0.5–0.9 °F) by 2100 without the Kigali Amendment. With the Kigali Amendment, the increase of global temperatures by 2100 due to hydrofluorocarbons is predicted to be around 0.06 °C (0.1 °F).[¹⁰⁴]

Alternatives to continual air conditioning include passive cooling, passive solar cooling, natural ventilation, operating shades to reduce solar gain, using trees, architectural shades, windows (and using window coatings) to reduce solar gain. *[citation needed]*

Social effects

[edit]

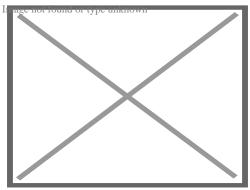
Socioeconomic groups with a household income below around \$10,000 tend to have a low air conditioning adoption,[⁴²] which worsens heat-related mortality.[⁷] The lack of cooling can be hazardous, as areas with lower use of air conditioning correlate with higher rates of heat-related mortality and hospitalizations.[⁸⁹] Premature mortality in NYC is projected to grow between 47% and 95% in 30 years, with lower-income and vulnerable populations most at risk.[⁸⁹] Studies on the correlation between heat-related mortality and hospitalizations can be traced in Phoenix, Arizona,[¹⁰⁵] Hong Kong,[¹⁰⁶] China,[¹⁰⁶] Japan,[¹⁰⁷] and Italy.[¹⁰⁸][¹⁰⁹] Additionally, costs concerning health care can act as another barrier, as the lack of private health insurance during a 2009 heat wave in Australia, was associated with heat-related hospitalization.[¹⁰⁹]

Disparities in socioeconomic status and access to air conditioning are connected by some to institutionalized racism, which leads to the association of specific marginalized

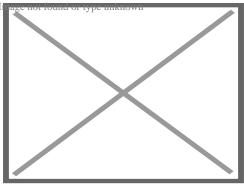
communities with lower economic status, poorer health, residing in hotter neighborhoods, engaging in physically demanding labor, and experiencing limited access to cooling technologies such as air conditioning.[¹⁰⁹] A study overlooking Chicago, Illinois, Detroit, and Michigan found that black households were half as likely to have central air conditioning units when compared to their white counterparts.[¹¹⁰] Especially in cities, Redlining creates heat islands, increasing temperatures in certain parts of the city.[¹⁰⁹] This is due to materials heat-absorbing building materials and pavements and lack of vegetation and shade coverage.[¹¹¹] There have been initiatives that provide cooling solutions to low-income communities, such as public cooling spaces.[⁸][¹¹¹]

Other techniques

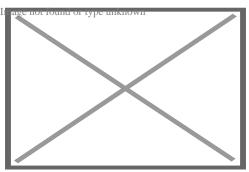
[edit]


Buildings designed with passive air conditioning are generally less expensive to construct and maintain than buildings with conventional HVAC systems with lower energy demands.^[112] While tens of air changes per hour, and cooling of tens of degrees, can be achieved with passive methods, site-specific microclimate must be taken into account, complicating building design.^[12]

Many techniques can be used to increase comfort and reduce the temperature in buildings. These include evaporative cooling, selective shading, wind, thermal convection, and heat storage.[¹¹³]


Passive ventilation

[edit]

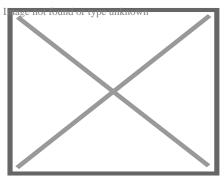

This section is an excerpt from Passive ventilation.[edit]

The ventilation system of a regular earthship

Dogtrot houses are designed to maximise natural ventilation.

A roof turbine ventilator, colloquially known as a 'Whirly Bird' is an application of wind driven ventilation.

Passive ventilation is the process of supplying air to and removing air from an indoor space without using mechanical systems. It refers to the flow of external air to an indoor space as a result of pressure differences arising from natural forces.

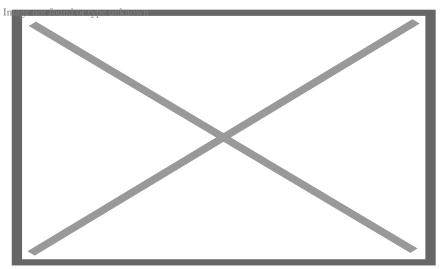

There are two types of natural ventilation occurring in buildings: *wind driven ventilation* and *buoyancy-driven ventilation*. Wind driven ventilation arises from the different pressures created by wind around a building or structure, and openings being formed on the perimeter which then permit flow through the building. Buoyancy-driven ventilation occurs as a result of the directional buoyancy force that results from temperature differences between the interior and exterior.[¹¹⁴]

Since the internal heat gains which create temperature differences between the interior and exterior are created by natural processes, including the heat from people, and wind effects are variable, naturally ventilated buildings are sometimes called "breathing buildings".

Passive cooling

[edit]

This section is an excerpt from Passive cooling.[edit]

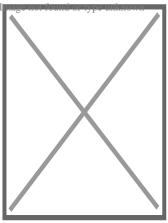


A traditional Iranian solar cooling design using a wind tower

Passive cooling is a building design approach that focuses on heat gain control and heat dissipation in a building in order to improve the indoor thermal comfort with low or no energy consumption.[¹¹⁵][¹¹⁶] This approach works either by preventing heat from entering the interior (heat gain prevention) or by removing heat from the building (natural cooling).[¹¹⁷]

Natural cooling utilizes on-site energy, available from the natural environment, combined with the architectural design of building components (e.g. building envelope), rather than mechanical systems to dissipate heat.^{[118}] Therefore, natural cooling depends not only on the architectural design of the building but on how the site's natural resources are used as heat sinks (i.e. everything that absorbs or dissipates heat). Examples of on-site heat sinks are the upper atmosphere (night sky), the outdoor air (wind), and the earth/soil.

Passive cooling is an important tool for design of buildings for climate change adaptation – reducing dependency on energy-intensive air conditioning in warming environments.[¹¹⁹][¹²⁰]



A pair of short windcatchers (*malqaf*) used in traditional architecture; wind is forced down on the windward side and leaves on the leeward side (*cross*-

ventilation). In the absence of wind, the circulation can be driven with evaporative cooling in the inlet (which is also designed to catch dust). In the center, a *shuksheika* (roof lantern vent), used to shade the qa'a below while allowing hot air rise out of it (*stack effect*).[¹¹]

Daytime radiative cooling

[edit]

Passive daytime radiative cooling (PDRC) surfaces are high in solar reflectance and heat emittance, cooling with zero energy use or pollution.[¹²¹]

Passive daytime radiative cooling (PDRC) surfaces reflect incoming solar radiation and heat back into outer space through the infrared window for cooling during the daytime. Daytime radiative cooling became possible with the ability to suppress solar heating using photonic structures, which emerged through a study by Raman et al. (2014).[¹²²] PDRCs can come in a variety of forms, including paint coatings and films, that are designed to be high in solar reflectance and thermal emittance.[¹²¹][¹²³]

PDRC applications on building roofs and envelopes have demonstrated significant decreases in energy consumption and costs.[¹²³] In suburban single-family residential areas, PDRC application on roofs can potentially lower energy costs by 26% to 46%.[¹²⁴] PDRCs are predicted to show a market size of ~\$27 billion for indoor space cooling by 2025 and have undergone a surge in research and development since the 2010s.[¹²⁵][¹²⁶]

Fans

[edit] Main article: Ceiling fan Hand fans have existed since prehistory. Large human-powered fans built into buildings include the punkah.

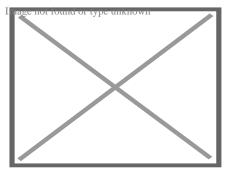
The 2nd-century Chinese inventor Ding Huan of the Han dynasty invented a rotary fan for air conditioning, with seven wheels 3 m (10 ft) in diameter and manually powered by prisoners.[¹²⁷]

. :̮'̠'Ẩ̃ƒâ€šÃ,¢ÃƒÆ'Ã,¢ÃƒÂ¢ÃƒÂ¢ã€šÂ¬Ã…¡Ãƒâ€šÃ,¬ÃƒÆ'ââ,¬Â¦Ãƒâ€šÃ, 99, In 747, Emperor Xuanzong (r. 712–762) of the Tang dynasty (618–907) had the Cool Hall (*Liang Dian*

ÃfÆ'Æâ€™Ãf'Ã,¦ÃfÆ'ââ,¬Å¡Ãf'Ã,¶ÃfÆ'ââ,¬Å¡Ãf'Ã,¼ÃfÆ'Æâ€™Ãf'Ã,¼ÃfÆ'Æâ€™Ãf'Ã,) built in the imperial palace, which the *Tang Yulin* describes as having water-powered fan wheels for air conditioning as well as rising jet streams of water from fountains. During the subsequent Song dynasty (960–1279), written sources mentioned the air conditioning rotary fan as even more widely used.[¹²⁷]

:Ã*f*Æ'Æâ€™Ã*f*'Ã,¢Ã*f*Æ'Ã,¢Ã*f*¢Ã¢Â¢â€šÂ¬Ã…¡Ã*f*'Ã,¬Ã*f*Æ'ââ,¬Â¦Ã*f*'Ã, 134

Thermal buffering


[edit]

In areas that are cold at night or in winter, heat storage is used. Heat may be stored in earth or masonry; air is drawn past the masonry to heat or cool it.^{[13}]

In areas that are below freezing at night in winter, snow and ice can be collected and stored in ice houses for later use in cooling.^[13] This technique is over 3,700 years old in the Middle East.^[128] Harvesting outdoor ice during winter and transporting and storing for use in summer was practiced by wealthy Europeans in the early 1600s,^[15] and became popular in Europe and the Americas towards the end of the 1600s.^[129] This practice was replaced by mechanical compression-cycle icemakers.

Evaporative cooling

[edit] Main article: Evaporative cooler

An evaporative cooler

In dry, hot climates, the evaporative cooling effect may be used by placing water at the air intake, such that the draft draws air over water and then into the house. For this reason, it is sometimes said that the fountain, in the architecture of hot, arid climates, is like the fireplace in the architecture of cold climates.^[11] Evaporative cooling also makes the air more humid, which can be beneficial in a dry desert climate.^[130]

Evaporative coolers tend to feel as if they are not working during times of high humidity, when there is not much dry air with which the coolers can work to make the air as cool as possible for dwelling occupants. Unlike other types of air conditioners, evaporative coolers rely on the outside air to be channeled through cooler pads that cool the air before it reaches the inside of a house through its air duct system; this cooled outside air must be allowed to push the warmer air within the house out through an exhaust opening such as an open door or window.[¹³¹]

See also

[edit]

- Air filter
- Air purifier
- Cleanroom
- Crankcase heater
- Energy recovery ventilation
- Indoor air quality
- Particulates

References

[edit]

- 1. ^ "Air Con". Cambridge Dictionary. Archived from the original on May 3, 2022. Retrieved January 6, 2023.
- 2. ^ Dissertation Abstracts International: The humanities and social sciences. A. University Microfilms. 2005. p. 3600.
- 3. ^ 1993 ASHRAE Handbook: Fundamentals. ASHRAE. 1993. ISBN 978-0-910110-97-6.
- A. A Enteria, Napoleon; Sawachi, Takao; Saito, Kiyoshi (January 31, 2023). Variable Refrigerant Flow Systems: Advances and Applications of VRF. Springer Nature. p. 46. ISBN 978-981-19-6833-4.
- Agencies, United States Congress House Committee on Appropriations Subcommittee on Dept of the Interior and Related (1988). Department of the Interior and Related Agencies Appropriations for 1989: Testimony of public witnesses, energy programs, Institute of Museum Services, National Endowment for the Arts, National Endowment for the Humanities. U.S. Government Printing Office. p. 629.

- 6. **^** "Earth Tubes: Providing the freshest possible air to your building". Earth Rangers Centre for Sustainable Technology Showcase. Archived from the original on January 28, 2021. Retrieved May 12, 2021.
- A *b c* Barreca, Alan; Clay, Karen; Deschenes, Olivier; Greenstone, Michael; Shapiro, Joseph S. (February 2016). "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century". Journal of Political Economy. **124** (1): 105–159. doi:10.1086/684582.
- A *a b c d e f g h i j* International Energy Agency (May 15, 2018). The Future of Cooling - Opportunities for energy-efficient air conditioning (PDF) (Report). Archived (PDF) from the original on June 26, 2024. Retrieved July 1, 2024.
- 9. A Laub, Julian M. (1963). Air Conditioning & Heating Practice. Holt, Rinehart and Winston. p. 367. ISBN 978-0-03-011225-6.
- 10. **^** "Air-conditioning found at 'oldest city in the world". The Independent. June 24, 2000. Archived from the original on December 8, 2023. Retrieved December 9, 2023.
- 11. ^ a b c Mohamed, Mady A.A. (January 2010). Lehmann, S.; Waer, H.A.; Al-Qawasmi, J. (eds.). Traditional Ways of Dealing with Climate in Egypt. The Seventh International Conference of Sustainable Architecture and Urban Development (SAUD 2010). Amman, Jordan: The Center for the Study of Architecture in Arab Region (CSAAR Press). pp. 247–266. Archived from the original on May 13, 2021. Retrieved May 12, 2021.
- A *a b c* Ford, Brian (September 2001). "Passive downdraught evaporative cooling: principles and practice". Architectural Research Quarterly. *5* (3): 271–280. doi:10.1017/S1359135501001312.
- A *b c* Attia, Shady; Herde, André de (June 22–24, 2009). Designing the Malqaf for Summer Cooling in Low-Rise Housing, an Experimental Study. 26th Conference on Passive and Low Energy Architecture (PLEA2009). Quebec City. Archived from the original on May 13, 2021. Retrieved May 12, 2021.
- * US EPA, OAR (October 17, 2014). "Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools". epa.gov. Archived from the original on July 5, 2022. Retrieved July 5, 2022.
- A *b c* Shachtman, Tom (1999). "Winter in Summer". Absolute zero and the conquest of cold. Boston: Houghton Mifflin Harcourt. ISBN 978-0395938881. OCLC 421754998. Archived from the original on May 13, 2021. Retrieved May 12, 2021.
- 16. ^ Porta, Giambattista Della (1584). Magiae naturalis (PDF). London. LCCN 09023451. Archived (PDF) from the original on May 13, 2021. Retrieved May 12, 2021. "In our method I shall observe what our ancestors have said; then I shall show by my own experience, whether they be true or false"
- * Beck, Leonard D. (October 1974). "Things Magical in the collections of the Rare Book and Special Collections Division" (PDF). Library of Congress Quarterly Journal. 31: 208–234. Archived (PDF) from the original on March 24, 2021. Retrieved May 12, 2021.

- 18. A Laszlo, Pierre (2001). Salt: Grain of Life. Columbia University Press. p. 117. ISBN 978-0231121989. OCLC 785781471. "Cornelius Drebbel air conditioning."
- 19. **^** Franklin, Benjamin (June 17, 1758). "Archived copy". Letter to John Lining. Archived from the original on February 25, 2021. Retrieved May 12, 2021.cite press release: CS1 maint: archived copy as title (link)
- A *a b c d* Green, Amanda (January 1, 2015). "The Cool History of the Air Conditioner". Popular Mechanics. Archived from the original on April 10, 2021. Retrieved May 12, 2021.
- 21. **^** "John Gorrie". Encyclopædia Britannica. September 29, 2020. Archived from the original on March 13, 2021. Retrieved May 12, 2021.
- 22. ^ Gorrie, John "Improved process for the artificial production of ice" U.S. Patent no. 8080 (Issued: May 6, 1851).
- 23. **^** Wright, E. Lynne (2009). It Happened in Florida: Remarkable Events That Shaped History. Rowman & Littlefield. pp. 13–. ISBN 978-0762761692.
- A *b* Bruce-Wallace, L. G. (1966). "Harrison, James (1816–1893)". Australian Dictionary of Biography. Vol. 1. Canberra: National Centre of Biography, Australian National University. ISBN 978-0-522-84459-7. ISSN 1833-7538. OCLC 70677943. Retrieved May 12, 2021.
- 25. A Palermo, Elizabeth (May 1, 2014). "Who Invented Air Conditioning?". livescience.com. Archived from the original on January 16, 2021. Retrieved May 12, 2021.
- Varrasi, John (June 6, 2011). "Global Cooling: The History of Air Conditioning". American Society of Mechanical Engineers. Archived from the original on March 8, 2021. Retrieved May 12, 2021.
- 27. ^ Simha, R. V. (February 2012). "Willis H Carrier". Resonance. **17** (2): 117–138. doi:10.1007/s12045-012-0014-y. ISSN 0971-8044. S2CID 116582893.
- 28. ^ Gulledge III, Charles; Knight, Dennis (February 11, 2016). "Heating, Ventilating, Air-Conditioning, And Refrigerating Engineering". National Institute of Building Sciences. Archived from the original on April 20, 2021. Retrieved May 12, 2021. " Though he did not actually invent air-conditioning nor did he take the first documented scientific approach to applying it, Willis Carrier is credited with integrating the scientific method, engineering, and business of this developing technology and creating the industry we know today as air-conditioning."
- 29. **^** "Willis Carrier 1876–1902". Carrier Global. Archived from the original on February 27, 2021. Retrieved May 12, 2021.
- * "Carrier Reports First Quarter 2020 Earnings". Carrier Global (Press release). May 8, 2020. Archived from the original on January 24, 2021. Retrieved May 12, 2021.
- 31. ^ "Carrier Becomes Independent, Publicly Traded Company, Begins Trading on New York Stock Exchange". Carrier Global (Press release). April 3, 2020. Archived from the original on February 25, 2021. Retrieved May 12, 2021.
- Cramer, Stuart W. "Humidifying and air conditioning apparatus" U.S. Patent no. 852,823 (filed: April 18, 1906; issued: May 7, 1907).

- See also: Cramer, Stuart W. (1906) "Recent development in air conditioning" in: Proceedings of the Tenth Annual Convention of the American Cotton Manufacturers Association Held at Asheville, North Carolina May 16–17, 1906. Charlotte, North Carolina, USA: Queen City Publishing Co. pp. 182-211.
- 33. VIS patent US808897A, Carrier, Willis H., "Apparatus for treating air", published January 2, 1906, issued January 2, 1906 and Buffalo Forge Company "Archived copy" (PDF). Archived from the original on December 5, 2019. Retrieved May 12, 2021.cite web: CS1 maint: archived copy as title (link) CS1 maint: bot: original URL status unknown (link)
- 34. * "First Air-Conditioned Auto". Popular Science. Vol. 123, no. 5. November 1933.
 p. 30. ISSN 0161-7370. Archived from the original on April 26, 2021. Retrieved May 12, 2021.
- * "Room-size air conditioner fits under window sill". Popular Mechanics. Vol. 63, no. 6. June 1935. p. 885. ISSN 0032-4558. Archived from the original on November 22, 2016. Retrieved May 12, 2021.
- 36. **^** "Michigan Fast Facts and Trivia". 50states.com. Archived from the original on June 18, 2017. Retrieved May 12, 2021.
- 37. **^** US patent US2433960A, Sherman, Robert S., "Air conditioning apparatus", published January 6, 1948, issued January 6, 1948
- 38. **^** "IEEE milestones (39) Inverter Air Conditioners, 1980–1981" (PDF). March 2021. Archived (PDF) from the original on January 21, 2024. Retrieved February 9, 2024.
- * "Inverter Air Conditioners, 1980–1981 IEEE Milestone Celebration Ceremony" (PDF). March 16, 2021. Archived (PDF) from the original on January 21, 2024. Retrieved February 9, 2024.
- 40. ^ Seale, Avrel (August 7, 2023). "Texas alumnus and his alma mater central to airconditioned homes". UT News. Retrieved November 13, 2024.
- 41. ^ "Air Conditioned Village". Atlas Obscura. Retrieved November 13, 2024.
- A *b c* Davis, Lucas; Gertler, Paul; Jarvis, Stephen; Wolfram, Catherine (July 2021). "Air conditioning and global inequality". Global Environmental Change. 69: 102299. Bibcode:2021GEC....6902299D. doi:10.1016/j.gloenvcha.2021.102299.
- Pierre-Louis, Kendra (May 15, 2018). "The World Wants Air-Conditioning. That Could Warm the World". The New York Times. Archived from the original on February 16, 2021. Retrieved May 12, 2021.
- 44. ^ Carroll, Rory (October 26, 2015). "How America became addicted to air conditioning". The Guardian. Los Angeles. Archived from the original on March 13, 2021. Retrieved May 12, 2021.
- 45. A Lester, Paul (July 20, 2015). "History of Air Conditioning". United States Department of Energy. Archived from the original on June 5, 2020. Retrieved May 12, 2021.
- Cornish, Cheryl; Cooper, Stephen; Jenkins, Salima. Characteristics of New Housing (Report). United States Census Bureau. Archived from the original on April 11, 2021. Retrieved May 12, 2021.

- 47. **^** "Central Air Conditioning Buying Guide". Consumer Reports. March 3, 2021. Archived from the original on May 9, 2021. Retrieved May 12, 2021.
- Petchers, Neil (2003). Combined Heating, Cooling & Power Handbook: Technologies & Applications : an Integrated Approach to Energy Resource Optimization. The Fairmont Press. p. 737. ISBN 978-0-88173-433-1.
- 49. **^** Krarti, Moncef (December 1, 2020). Energy Audit of Building Systems: An Engineering Approach, Third Edition. CRC Press. p. 370. ISBN 978-1-000-25967-4
- 50. **^** "What is a Reversing Valve". Samsung India. Archived from the original on February 22, 2019. Retrieved May 12, 2021.
- 51. **^** "Humidity and Comfort" (PDF). DriSteem. Archived from the original (PDF) on May 16, 2018. Retrieved May 12, 2021.
- Perryman, Oliver (April 19, 2021). "Dehumidifier vs Air Conditioning". Dehumidifier Critic. Archived from the original on May 13, 2021. Retrieved May 12, 2021.
- 53. ^ Snijders, Aart L. (July 30, 2008). "Aquifer Thermal Energy Storage (ATES) Technology Development and Major Applications in Europe" (PDF). Toronto and Region Conservation Authority. Arnhem: IFTech International. Archived (PDF) from the original on March 8, 2021. Retrieved May 12, 2021.
- 54. ^ *a b* "Cold Climate Air Source Heat Pump" (PDF). Minnesota Department of Commerce, Division of Energy Resources. Archived (PDF) from the original on January 2, 2022. Retrieved March 29, 2022.
- 55. **^** "Even in Frigid Temperatures, Air-Source Heat Pumps Keep Homes Warm From Alaska Coast to U.S. Mass Market". nrel.gov. Archived from the original on April 10, 2022. Retrieved March 29, 2022.
- 56. **^** "Heat Pumps: A Practical Solution for Cold Climates". RMI. December 10, 2020. Archived from the original on March 31, 2022. Retrieved March 28, 2022.
- 57. **^** "TEM Instruction Sheet" (PDF). TE Technology. March 14, 2012. Archived from the original (PDF) on January 24, 2013. Retrieved May 12, 2021.
- 58. **^** "Coefficient of Performance (COP) heat pumps". Grundfos. November 18, 2020. Archived from the original on May 3, 2021. Retrieved May 12, 2021.
- 59. **^** "Unpotted HP-199-1.4-0.8 at a hot-side temperature of 25 °C" (PDF). TE Technology. Archived from the original (PDF) on January 7, 2009. Retrieved February 9, 2024.
- Newell, David B.; Tiesinga, Eite, eds. (August 2019). The International System of Units (SI) (PDF). National Institute of Standards and Technology. doi: 10.6028/NIST.SP.330-2019. Archived (PDF) from the original on April 22, 2021. Retrieved May 13, 2021.
- ANSI/AHRI 210/240-2008: 2008 Standard for Performance Rating of Unitary Air-Conditioning & Air-Source Heat Pump Equipment (PDF). Air Conditioning, Heating and Refrigeration Institute. 2012. Archived from the original on March 29, 2018. Retrieved May 13, 2021.
- 62. A Baraniuk, Chris. "Cutting-Edge Technology Could Massively Reduce the Amount of Energy Used for Air Conditioning". Wired. ISSN 1059-1028. Retrieved July 18,

2024.

- 63. **^** "M-Series Contractor Guide" (PDF). Mitsubishipro.com. p. 19. Archived (PDF) from the original on March 18, 2021. Retrieved May 12, 2021.
- 64. **^**

"̮'̠'ÂÃ,£ÃƒÆ'Ã,¢ÃƒÂ¢Ã∮â¢ã,¬Å¡Ã,¬Ãƒâ€¦Ã,¡ÃƒÆ'ââ,¬Å¡Ãƒâ€šÃ,°Á ̮'̢â,¬Å¡Ãƒâ€šÃ,´ÃƒÆ'Æâ€™Ãƒâ€šÃ,¥ÃÆ'ââ,¬Å¡Ãƒâ€šÃ,•ÃÆ'ââ,¬Å¡Ãƒ

' ÃfÆ'Æâ€™Ãf'Ã,¨ÃfÆ'ââ,¬Å¡Ãf'Ã,ªÃfÆ'ââ,¬Å¡Ãf'Ã,¿ÃfÆ'Æâ€™Ãf !

. ĀfÆ'Æâ€™Ãf'Ã,£ÃfÆ'Ã,¢Ãf¢Ãâ,¬Å¡Ã,¬Ăf…Ã,¦ÃfÆ'ââ,¬Å¡Ãf'Ã,Â-ÃfÆ'Æâ€™Ãf'Ã,£ÃfÆ'ââ,¬Â Ãf¢Ã¢â€šÂ¬Ã¢â€žÂ¢ÃfÆ'ââ,¬Â Ãf¢Ã¢â€šÂ ÃfÆ'Æâ€™Ãf'Ã,§ÃfÆ'ââ,¬Â¦Ãf¢Ã¢â€šÂ¬Ã…"ÃfÆ'ââ,¬Å¡Ãf'Ã,•ÃfA de

ĨŦÆ'ĨŦ'Ĩf'Ĩ,£ĨŦÆ'Ĩ,¢Ĩf¢Ĩâ¢â,¬Å¡Ĩ,¬Ĩf…Ĩ,ÂŢÆ'Ĩ¢â,¬Å¡Ĩfæ?Ĩ ĨŦÆ'ĨŦ'Ĩf'Ĩ,Â¥ĨŦÆ'Ĩ¢â,¬Å¡Ĩf'Ĩ,®ĨŦÆ'Ĩ¢â,¬Å¡Ĩf'Ĩ,¶ĨŦÆ'Ĩ¢â ĨŦÆ'ĨŦ'Ĩf'Ĩ,Â¥ĨŦÆ'Ĩ¢â,¬Å¡Ĩf'Ĩ,Â-

ÄfÆ'ââ,¬Å¡Řf'Ã,¦ÃƒÆ'Æâ€™Âƒâ€šÃ,£ÃƒÆ'ââ,¬Å¡Ãf'Ã,•ÃÆ'ââ,¬Å¡Ãƒâ shouene-kaden.net. Archived from the original on September 7, 2022. Retrieved January 21, 2024.

- 65. **^** "Air conditioner | History". Toshiba Carrier. April 2016. Archived from the original on March 9, 2021. Retrieved May 12, 2021.
- 66. **^** "1920s–1970s | History". Mitsubishi Electric. Archived from the original on March 8, 2021. Retrieved May 12, 2021.
- 67. **^** Wagner, Gerry (November 30, 2021). "The Duct Free Zone: History of the Mini Split". HPAC Magazine. Retrieved February 9, 2024.
- 68. **^** "History of Daikin Innovation". Daikin. Archived from the original on June 5, 2020. Retrieved May 12, 2021.
- 69. **^** Feit, Justin (December 20, 2017). "The Emergence of VRF as a Viable HVAC Option". buildings.com. Archived from the original on December 3, 2020. Retrieved May 12, 2021.
- 70. **A b** "Central Air Conditioning". United States Department of Energy. Archived from the original on January 30, 2021. Retrieved May 12, 2021.
- 71. **^** Kreith, Frank; Wang, Shan K.; Norton, Paul (April 20, 2018). Air Conditioning and Refrigeration Engineering. CRC Press. ISBN 978-1-351-46783-4.
- 72. **^** Wang, Shan K. (November 7, 2000). Handbook of Air Conditioning and Refrigeration. McGraw-Hill Education. ISBN 978-0-07-068167-5.
- * Hleborodova, Veronika (August 14, 2018). "Portable Vs Split System Air Conditioning | Pros & Cons". Canstar Blue. Archived from the original on March 9, 2021. Retrieved May 12, 2021.
- 74. ^ Kamins, Toni L. (July 15, 2013). "Through-the-Wall Versus PTAC Air Conditioners: A Guide for New Yorkers". Brick Underground. Archived from the original on January 15, 2021. Retrieved May 12, 2021.
- 75. **^** "Self-Contained Air Conditioning Systems". Daikin Applied Americas. 2015. Archived from the original on October 30, 2020. Retrieved May 12, 2021.

- * "LSWU/LSWD Vertical Water-Cooled Self-Contained Unit Engineering Guide" (PDF). Johnson Controls. April 6, 2018. Archived (PDF) from the original on May 13, 2021. Retrieved May 12, 2021.
- 77. **^** "Packaged Rooftop Unit" (PDF). Carrier Global. 2016. Archived (PDF) from the original on May 13, 2021. Retrieved May 12, 2021.
- 78. **^** "Packaged Rooftop Air Conditioners" (PDF). Trane Technologies. November 2006. Archived (PDF) from the original on May 13, 2021. Retrieved May 12, 2021.
- 79. "What is Packaged Air Conditioner? Types of Packged Air Conditioners". Bright Hub Engineering. January 13, 2010. Archived from the original on February 22, 2018. Retrieved May 12, 2021.
- * Evans, Paul (November 11, 2018). "RTU Rooftop Units explained". The Engineering Mindset. Archived from the original on January 15, 2021. Retrieved May 12, 2021.
- 81. **^** "water-cooled Johnson Supply". studylib.net. 2000. Archived from the original on May 13, 2021. Retrieved May 12, 2021.
- 82. **^** "Water Cooled Packaged Air Conditioners" (PDF). Japan: Daikin. May 2, 2003. Archived (PDF) from the original on June 19, 2018. Retrieved May 12, 2021.
- 83. **^** "Water Cooled Packaged Unit" (PDF). Daikin. Archived (PDF) from the original on May 13, 2021. Retrieved May 12, 2021.
- 84. **^** Lun, Y. H. Venus; Tung, S. L. Dennis (November 13, 2019). Heat Pumps for Sustainable Heating and Cooling. Springer Nature. p. 25. ISBN 978-3-030-31387-6
- 85. A Ghanbariannaeeni, Ali; Ghazanfarihashemi, Ghazalehsadat (June 2012). "Bypass Method For Recip Compressor Capacity Control". Pipeline and Gas Journal. 239 (6). Archived from the original on August 12, 2014. Retrieved February 9, 2024.
- 86. **^** "Heat Stroke (Hyperthermia)". Harvard Health. January 2, 2019. Archived from the original on January 29, 2021. Retrieved May 13, 2021.
- 87. **^** "Weather Related Fatality and Injury Statistics". National Weather Service. 2021. Archived from the original on August 24, 2022. Retrieved August 24, 2022.
- * "Extreme Weather: A Guide to Surviving Flash Floods, Tornadoes, Hurricanes, Heat Waves, Snowstorms Tsunamis and Other Natural Disasters". Reference Reviews. 26 (8): 41. October 19, 2012. doi:10.1108/09504121211278322. ISSN 0950-4125. Archived from the original on January 21, 2024. Retrieved December 9, 2023.
- A *b c* Gamarro, Harold; Ortiz, Luis; González, Jorge E. (August 1, 2020). "Adapting to Extreme Heat: Social, Atmospheric, and Infrastructure Impacts of Air-Conditioning in Megacities—The Case of New York City". ASME Journal of Engineering for Sustainable Buildings and Cities. *1* (3). doi:10.1115/1.4048175. ISSN 2642-6641. S2CID 222121944.
- Spiegelman, Jay; Friedman, Herman; Blumstein, George I. (September 1, 1963). "The effects of central air conditioning on pollen, mold, and bacterial concentrations". Journal of Allergy. **34** (5): 426–431. doi:10.1016/0021-8707(63)90007-8. ISSN 0021-8707. PMID 14066385.

- 91. **^** Portnoy, Jay M.; Jara, David (February 1, 2015). "Mold allergy revisited". Annals of Allergy, Asthma & Immunology. **114** (2): 83–89. doi:10.1016/j.anai.2014.10.004. ISSN 1081-1206. PMID 25624128.
- 92. **^** "Subpart 4-1 Cooling Towers". New York Codes, Rules and Regulations. June 7, 2016. Archived from the original on May 13, 2021. Retrieved May 13, 2021.
- Nordhaus, William D. (February 10, 2010). "Geography and macroeconomics: New data and new findings". Proceedings of the National Academy of Sciences. 103 (10): 3510–3517. doi:10.1073/pnas.0509842103. ISSN 0027-8424. PMC 1363683. PMID 16473945.
- Parreca, Alan; Deschenes, Olivier; Guldi, Melanie (2018). "Maybe next month? Temperature shocks and dynamic adjustments in birth rates". Demography. 55 (4): 1269–1293. doi:10.1007/s13524-018-0690-7. PMC 7457515. PMID 29968058.
- ⁶ Glaeser, Edward L.; Tobio, Kristina (January 2008). "The Rise of the Sunbelt". Southern Economic Journal. **74** (3): 609–643. doi:10.1002/j.2325-8012.2008.tb00856.x.
- Sherman, Peter; Lin, Haiyang; McElroy, Michael (2018). "Projected global demand for air conditioning associated with extreme heat and implications for electricity grids in poorer countries". Energy and Buildings. 268: 112198. doi: 10.1016/j.enbuild.2022.112198. ISSN 0378-7788. S2CID 248979815.
- Air Filters Used in Air Conditioning and General Ventilation Part 1: Methods of Test for Atmospheric Dust Spot Efficiency and Synthetic Dust Weight Arrestance (Withdrawn Standard). British Standards Institution. March 29, 1985. BS 6540-1:1985.
- Mutschler, Robin; Rüdisüli, Martin; Heer, Philipp; Eggimann, Sven (April 15, 2021). "Benchmarking cooling and heating energy demands considering climate change, population growth and cooling device uptake". Applied Energy. 288: 116636. Bibcode:2021ApEn..28816636M. doi:10.1016/j.apenergy.2021.116636. ISSN 0306-2619.
- 99. ^ a b "Climate-friendly cooling could cut years of Greenhouse Gas Emissions and save US\$ trillions: UN". doi:10.1163/9789004322714_cclc_2020-0252-0973. cite journal: Cite journal requires |journal= (help)
- 100. A Gerretsen, Isabelle (December 8, 2020). "How your fridge is heating up the planet". BBC Future. Archived from the original on May 10, 2021. Retrieved May 13, 2021.
- 101. ^ Encyclopedia of Energy: Ph-S. Elsevier. 2004. ISBN 978-0121764821.
- 102. A Corberan, J.M. (2016). "New trends and developments in ground-source heat pumps". Advances in Ground-Source Heat Pump Systems. pp. 359–385. doi:10.1016/B978-0-08-100311-4.00013-3. ISBN 978-0-08-100311-4.
- 103. A Roselli, Carlo; Sasso, Maurizio (2021). Geothermal Energy Utilization and Technologies 2020. MDPI. ISBN 978-3036507040.
- 104. **^** "Cooling Emissions and Policy Synthesis Report: Benefits of cooling efficiency and the Kigali Amendment, United Nations Environment Programme - International Energy Agency, 2020" (PDF).

- 105. A Harlan, Sharon L.; Declet-Barreto, Juan H.; Stefanov, William L.; Petitti, Diana B. (February 2013). "Neighborhood Effects on Heat Deaths: Social and Environmental Predictors of Vulnerability in Maricopa County, Arizona". Environmental Health Perspectives. **121** (2): 197–204. Bibcode:2013EnvHP.121..197H. doi:10.1289/ehp.1104625. ISSN 0091-6765. PMC 3569676. PMID 23164621.
- 106. ^ a b Chan, Emily Ying Yang; Goggins, William B; Kim, Jacqueline Jakyoung; Griffiths, Sian M (April 2012). "A study of intracity variation of temperature-related mortality and socioeconomic status among the Chinese population in Hong Kong". Journal of Epidemiology and Community Health. 66 (4): 322–327. doi:10.1136/jech.2008.085167. ISSN 0143-005X. PMC 3292716. PMID 20974839.
- 107. Ng, Chris Fook Sheng; Ueda, Kayo; Takeuchi, Ayano; Nitta, Hiroshi; Konishi, Shoko; Bagrowicz, Rinako; Watanabe, Chiho; Takami, Akinori (2014).
 "Sociogeographic Variation in the Effects of Heat and Cold on Daily Mortality in Japan". Journal of Epidemiology. 24 (1): 15–24. doi:10.2188/jea.JE20130051.
 PMC 3872520. PMID 24317342.
- 108. A Stafoggia, Massimo; Forastiere, Francesco; Agostini, Daniele; Biggeri, Annibale; Bisanti, Luigi; Cadum, Ennio; Caranci, Nicola; de'Donato, Francesca; De Lisio, Sara; De Maria, Moreno; Michelozzi, Paola; Miglio, Rossella; Pandolfi, Paolo; Picciotto, Sally; Rognoni, Magda (2006). "Vulnerability to Heat-Related Mortality: A Multicity, Population-Based, Case-Crossover Analysis". Epidemiology. **17** (3): 315–323. doi:10.1097/01.ede.0000208477.36665.34. ISSN 1044-3983. JSTOR 20486220. PMID 16570026. S2CID 20283342.
- 109. ^ a b c d Gronlund, Carina J. (September 2014). "Racial and Socioeconomic Disparities in Heat-Related Health Effects and Their Mechanisms: a Review". Current Epidemiology Reports. 1 (3): 165–173. doi:10.1007/s40471-014-0014-4. PMC 4264980. PMID 25512891.
- 110. ^ O'Neill, M. S. (May 11, 2005). "Disparities by Race in Heat-Related Mortality in Four US Cities: The Role of Air Conditioning Prevalence". Journal of Urban Health: Bulletin of the New York Academy of Medicine. 82 (2): 191–197. doi:10.1093/jurban/jti043. PMC 3456567. PMID 15888640.
- 111. ^ a b Sampson, Natalie R.; Gronlund, Carina J.; Buxton, Miatta A.; Catalano, Linda; White-Newsome, Jalonne L.; Conlon, Kathryn C.; O'Neill, Marie S.; McCormick, Sabrina; Parker, Edith A. (April 1, 2013). "Staying cool in a changing climate: Reaching vulnerable populations during heat events". Global Environmental Change. 23 (2): 475–484. Bibcode:2013GEC....23..475S. doi:10.1016/j.gloenvcha.2012.12.011. ISSN 0959-3780. PMC 5784212. PMID 29375195.
- 112. A Niktash, Amirreza; Huynh, B. Phuoc (July 2–4, 2014). Simulation and Analysis of Ventilation Flow Through a Room Caused by a Two-sided Windcatcher Using a LES Method (PDF). World Congress on Engineering. Lecture Notes in Engineering and Computer Science. Vol. 2. London. eISSN 2078-0966. ISBN 978-9881925350. ISSN 2078-0958. Archived (PDF) from the original on April 26, 2018. Retrieved May 13, 2021.

- 113. A Zhang, Chen; Kazanci, Ongun Berk; Levinson, Ronnen; Heiselberg, Per; Olesen, Bjarne W.; Chiesa, Giacomo; Sodagar, Behzad; Ai, Zhengtao; Selkowitz, Stephen; Zinzi, Michele; Mahdavi, Ardeshir (November 15, 2021). "Resilient cooling strategies A critical review and qualitative assessment". Energy and Buildings. 251: 111312. Bibcode:2021EneBu.25111312Z. doi:10.1016/j.enbuild.2021.111312. hdl:2117/363031. ISSN 0378-7788.
- 114. ^A Linden, P. F. (1999). "The Fluid Mechanics of Natural Ventilation". Annual Review of Fluid Mechanics. **31**: 201–238. Bibcode:1999AnRFM..31..201L. doi:10.1146/annurev.fluid.31.1.201.
- 115. A Santamouris, M.; Asimakoupolos, D. (1996). Passive cooling of buildings (1st ed.). London: James & James (Science Publishers) Ltd. ISBN 978-1-873936-47-4.
- 116. A Leo Samuel, D.G.; Shiva Nagendra, S.M.; Maiya, M.P. (August 2013). "Passive alternatives to mechanical air conditioning of building: A review". Building and Environment. 66: 54–64. Bibcode:2013BuEnv..66...54S. doi:10.1016/j.buildenv.2013.04.016.
- 117. ^ M.j, Limb (January 1, 1998). "BIB 08: An Annotated Bibliography: Passive Cooling Technology for Office Buildings in Hot Dry and Temperate Climates".
- 118. ^ Niles, Philip; Kenneth, Haggard (1980). Passive Solar Handbook. California Energy Resources Conservation. ASIN B001UYRTMM.
- 119. **^** "Cooling: The hidden threat for climate change and sustainable goals". phys.org. Retrieved September 18, 2021.
- 120. **^** Ford, Brian (September 2001). "Passive downdraught evaporative cooling: principles and practice". Arq: Architectural Research Quarterly. **5** (3): 271–280. doi:10.1017/S1359135501001312. ISSN 1474-0516. S2CID 110209529.
- 121. ^ a b Chen, Meijie; Pang, Dan; Chen, Xingyu; Yan, Hongjie; Yang, Yuan (2022). "Passive daytime radiative cooling: Fundamentals, material designs, and applications". EcoMat. 4. doi:10.1002/eom2.12153. S2CID 240331557. "Passive daytime radiative cooling (PDRC) dissipates terrestrial heat to the extremely cold outer space without using any energy input or producing pollution. It has the potential to simultaneously alleviate the two major problems of energy crisis and global warming."
- 122. A Raman, Aaswath P.; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui (November 2014). "Passive radiative cooling below ambient air temperature under direct sunlight". Nature. **515** (7528): 540–544. Bibcode:2014Natur.515..540R. doi:10.1038/nature13883. PMID 25428501.
- 123. A *b* Bijarniya, Jay Prakash; Sarkar, Jahar; Maiti, Pralay (November 2020). "Review on passive daytime radiative cooling: Fundamentals, recent researches, challenges and opportunities". Renewable and Sustainable Energy Reviews. 133: 110263. Bibcode:2020RSERv.13310263B. doi:10.1016/j.rser.2020.110263. S2CID 224874019.
- 124. A Mokhtari, Reza; Ulpiani, Giulia; Ghasempour, Roghayeh (July 2022). "The Cooling Station: Combining hydronic radiant cooling and daytime radiative cooling for urban shelters". Applied Thermal Engineering. **211**: 118493.

Bibcode:2022AppTE.21118493M. doi:10.1016/j.appIthermaleng.2022.118493.

- 125. A Yang, Yuan; Zhang, Yifan (July 2020). "Passive daytime radiative cooling: Principle, application, and economic analysis". MRS Energy & Sustainability. 7 (1). doi:10.1557/mre.2020.18.
- 126. A Miranda, Nicole D.; Renaldi, Renaldi; Khosla, Radhika; McCulloch, Malcolm D. (October 2021). "Bibliometric analysis and landscape of actors in passive cooling research". Renewable and Sustainable Energy Reviews. **149**: 111406. Bibcode:2021RSERv.14911406M. doi:10.1016/j.rser.2021.111406.
- 127. ^ a b Needham, Joseph; Wang, Ling (1991). Science and Civilisation in China, Volume 4: Physics and Physical Technology, Part 2, Mechanical Engineering. Cambridge University Press. ISBN 978-0521058032. OCLC 468144152.
- 128. A Dalley, Stephanie (2002). Mari and Karana: Two Old Babylonian Cities (2nd ed.). Piscataway, New Jersey: Gorgias Press. p. 91. ISBN 978-1931956024. OCLC 961899663. Archived from the original on January 29, 2021. Retrieved May 13, 2021.
- 129. A Nagengast, Bernard (February 1999). "Comfort from a Block of Ice: A History of Comfort Cooling Using Ice" (PDF). ASHRAE Journal. 41 (2): 49. ISSN 0001-2491. Archived (PDF) from the original on May 13, 2021. Retrieved May 13, 2021.
- A Bahadori, Mehdi N. (February 1978). "Passive Cooling Systems in Iranian Architecture". Scientific American. 238 (2): 144–154. Bibcode:1978SciAm.238b.144B. doi:10.1038/SCIENTIFICAMERICAN0278-144.
- 131. A Smith, Shane (2000). Greenhouse Gardener's Companion: Growing Food and Flowers in Your Greenhouse Or Sunspace. Illustrated by Marjorie C. Leggitt (illustrated, revised ed.). Golden, Colorado: Fulcrum Publishing. p. 62. ISBN 978-1555914509. OCLC 905564174. Archived from the original on May 13, 2021. Retrieved August 25, 2020.

External links

Wikimedia Commons has media related to Air conditioners.

Look up *Cassette air conditioner* in Wiktionary, the free dictionary.

Wikiversity has learning resources about *Refrigeration and air conditioning*

- U.S. patent 808,897 Carrier's original patent
- U.S. patent 1,172,429
- o U.S. patent 2,363,294
- o Scientific American, "Artificial Cold", 28 August 1880, p. 138

o Scientific American, "The Presidential Cold Air Machine", 6 August 1881, p. 84

οV

o t

• **e**

Heating, ventilation, and air conditioning

- Air changes per hour
- Bake-out
- Building envelope
- \circ Convection
- Dilution
- Domestic energy consumption
- Enthalpy
- Fluid dynamics
- Gas compressor
- Heat pump and refrigeration cycle
- Heat transfer

Fundamental concepts

- HumidityInfiltration
- Latent heat
- Noise control
- Outgassing
- Particulates
- Psychrometrics
- Sensible heat
- Stack effect
- Thermal comfort
- Thermal destratification
- $\circ~$ Thermal mass
- Thermodynamics
- Vapour pressure of water

- Absorption-compression heat pump
- Absorption refrigerator
- Air barrier
- Air conditioning
- Antifreeze
- Automobile air conditioning
- Autonomous building
- Building insulation materials
- Central heating
- Central solar heating
- Chilled beam
- Chilled water
- Constant air volume (CAV)
- Coolant
- Cross ventilation
- Dedicated outdoor air system (DOAS)
- $\circ\,$ Deep water source cooling
- Demand controlled ventilation (DCV)
- Displacement ventilation
- District cooling
- District heating
- Electric heating
- Energy recovery ventilation (ERV)
- Firestop
- Forced-air
- Forced-air gas
- Free cooling
- Heat recovery ventilation (HRV)
- Hybrid heat

Technology

- Hydronics
- Ice storage air conditioning
- Kitchen ventilation
- Mixed-mode ventilation
- Microgeneration
- $\circ\,$ Passive cooling
- Passive daytime radiative cooling
- $\circ~\mbox{Passive house}$
- Passive ventilation
- Radiant heating and cooling
- Radiant cooling
- Radiant heating
- Radon mitigation
- Refrigeration
- Renewable heat
- Room air distribution
- Solar air heat
- Solar combisystem
- Solar cooling

- Air conditioner inverter
- \circ Air door
- Air filter
- Air handler
- Air ionizer
- Air-mixing plenum
- Air purifier
- $\circ~$ Air source heat pump
- Attic fan
- Automatic balancing valve
- $\circ\,$ Back boiler
- Barrier pipe
- Blast damper
- Boiler
- Centrifugal fan
- Ceramic heater
- Chiller
- Condensate pump
- \circ Condenser
- Condensing boiler
- Convection heater
- Compressor
- $\circ~$ Cooling tower
- Damper
- Dehumidifier
- Duct
- Economizer
- Electrostatic precipitator
- Evaporative cooler
- Evaporator
- Exhaust hood
- Expansion tank
- \circ Fan
- Fan coil unit
- Fan filter unit
- Fan heater
- Fire damper
- \circ Fireplace
- Fireplace insert
- Freeze stat
- ∘ Flue
- Freon
- $\circ \ \text{Fume hood}$
- Furnace
- Gas compressor
- Gas heater
- Gasoline heater
- Grease duct

- Air flow meter
- Aquastat
- BACnet
- Blower door
- Building automation
- Carbon dioxide sensor
- Clean air delivery rate (CADR)
- Control valve
- Gas detector
- Home energy monitor
- Humidistat
- HVAC control system
- Infrared thermometer

Measurement and control

- Intelligent buildingsLonWorks
- Minimum efficiency reporting value (MERV)
- Normal temperature and pressure (NTP)
- OpenTherm
- Programmable communicating thermostat
- Programmable thermostat
- Psychrometrics
- Room temperature
- Smart thermostat
- Standard temperature and pressure (STP)
- Thermographic camera
- Thermostat
- Thermostatic radiator valve
- Architectural acoustics
- Architectural engineering
- Architectural technologist
- Building services engineering
- Building information modeling (BIM)
- Deep energy retrofit
- Duct cleaning

Professions, trades,

and services

- Duct leakage testing
- Environmental engineering
- Hydronic balancing
- Kitchen exhaust cleaning
- Mechanical engineering
- Mechanical, electrical, and plumbing
- $\circ\,$ Mold growth, assessment, and remediation
- Refrigerant reclamation
- Testing, adjusting, balancing

Industry organizations	 AHRI AMCA ASHRAE ASTM International BRE BSRIA CIBSE Institute of Refrigeration IIR LEED SMACNA UMC 	
Health and safety	 Indoor air quality (IAQ) Passive smoking Sick building syndrome (SBS) Volatile organic compound (VOC) ASHRAE Handbook Building science Firepresefing 	
See also	 Fireproofing Glossary of HVAC terms Warm Spaces World Refrigeration Day Template:Home automation Template:Solar energy 	

- v
- **t**
- **e**

Home appliances

- Air conditioner
- Air fryer
- Air ioniser
- Air purifier
- Barbecue grill
- Blender
 - $\circ~$ Immersion blender
- Bread machine
- Bug zapper
- Coffee percolator
- Clothes dryer
 combo
- Clothes iron
- Coffeemaker
- Dehumidifier
- Dishwasher
 - drying cabinet
- Domestic robot
 - comparison
- Deep fryer
- Electric blanket
- Electric drill
- Electric kettle
- Electric knife
- Electric water boiler
- Electric heater
- Electric shaver
- Electric toothbrush
- Epilator
- Espresso machine
- Evaporative cooler
- Food processor
- ∘ Fan
 - attic
 - bladeless
 - ceiling
 - Fan heater
 - \circ window
- Types Freezer
 - Garbage disposer
 - Hair dryer
 - Hair iron
 - Humidifier
 - Icemaker
 - Ice cream maker
 - Induction cooker
 - Instant hot water dispenser
 - Juicer
 - Kitala and la a al

See also

Appliance plug Appliance recycling

• V

∘ t

• **e**

Roofs

- Arched roof
- Barrel roof
- Board roof
- Bochka roof
- Bow roof
- Butterfly roof
- Clerestory
- Conical roof
- Dome
- Flat roof
- Gable roof
- Gablet roof

Roof shapes

- Gambrel roof
- Half-hipped roof
- Hip roof
- Onion dome
- Mansard roof
- Pavilion roof
- Rhombic roof
- Ridged roof
- Saddle roof
- Sawtooth roof
- Shed roof
- Tented roof

Cross-gabled roof

Image not found or type unknown

- Air conditioning unit
- \circ Attic
- Catslide
- \circ Chimney
- Collar beam
- Dormer
- Eaves
- Flashing
- Gable
- Green roof
- Gutter
- Hanging beam
- Joist
- Lightning rod
- Loft○ Purlin
- Roof elements
- Rafter
- Ridge vent
- Roof batten
- Roof garden
- Roofline
- Roof ridge
- Roof sheeting
- Roof tiles
- Roof truss
- Roof window
- Skylight
- Soffit
- Solar panels
- Spire
- Weathervane
- Wind brace
- o v
- o t
- **e**
- Electronics

- Analogue electronics
- Digital electronics
- Electronic engineering
- \circ Instrumentation
- MicroelectronicsOptoelectronics

Branches

- Power electronics
- Printed electronics
- Semiconductor
- Schematic capture
- Thermal management
- 2020s in computing
- Atomtronics
- Bioelectronics
- List of emerging electronics
- Failure of electronic components
- Flexible electronics
- Advanced topics
- Low-power electronics Molecular electronics
- Nanoelectronics
 - Organic electronics
 - Photonics
 - Piezotronics
 - Quantum electronics
 - Spintronics

- Air conditioner
- Central heating
- Clothes dryer
- Computer/Notebook
- Camera
- Dishwasher
- Freezer
- Home robot
- Home cinema
- Home theater PC
- Information technology

Electronic • Cooker

equipment

- Microwave oven
- $\circ~$ Mobile phone
- Networking hardware
- Portable media player
- \circ Radio
- Refrigerator
- Robotic vacuum cleaner
- Tablet
- \circ Telephone
- \circ Television
- Water heater
- Video game console
- Washing machine

- Audio equipment
- Automotive electronics
- \circ Avionics
- Control system
- Data acquisition
- \circ e-book
- e-health
- Electromagnetic warfare
- Electronics industry
- Embedded system
- Home appliance
- $\circ~$ Home automation
- Integrated circuit

Applications

- Home appliance
 - Consumer electronics
 - Major appliance
 - Small appliance
 - Marine electronics
 - Microwave technology
 - Military electronics
 - Multimedia
 - Nuclear electronics
 - Open-source hardware
 - Radar and Radio navigation
 - Radio electronics
 - Terahertz technology
 - Wired and Wireless Communications

Authority control databases: National Bar of Sunday with the second stables in the secon

About Royal Supply South

Things To Do in Arapahoe County

Photo

Museum of Outdoor Arts

4.5 (397)

Photo

Image not found or type unknown

Denver Zoo

4.6 (28687)

Photo

Image not found or type unknown

Plains Conservation Center (Visitor Center)

4.6 (393)

Photo

Meow Wolf Denver | Convergence Station

4.5 (14709)

Photo

Image not found or type unknown

Cherry Creek Dam

4.3 (6)

Photo

Image not found or type unknown

Cherry Creek Valley Ecological Park

4.7 (484)

Driving Directions in Arapahoe County

Driving Directions From Walmart Supercenter to Royal Supply South

Driving Directions From Wells Fargo ATM to Royal Supply South

Driving Directions From St. Nicks Christmas and Collectibles to Royal Supply South

Driving Directions From Costco Wholesale to Royal Supply South

Driving Directions From Walgreens to Royal Supply South

Driving Directions From Arapahoe County Assessor to Royal Supply South

https://www.google.com/maps/dir/Sheridan+High+School/Royal+Supply+South/@39.0105.0295671,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJUU_Q0AKAblcRj5a2Srb105.0295671!2d39.6438845!1m5!1m1!1sChIJ06br1RqAblcRAjyWXdIXZaw!2m2!1d-105.0233105!2d39.6435918!3e0

https://www.google.com/maps/dir/Costco+Vision+Center/Royal+Supply+South/@39.6 105.0063198,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJM2nee22AblcRiKI_Sp6P 105.0063198!2d39.6446301!1m5!1m1!1sChIJ06br1RqAblcRAjyWXdIXZaw!2m2!1d-105.0233105!2d39.6435918!3e2

https://www.google.com/maps/dir/Lowe%27s+Home+Improvement/Royal+Supply+So 105.013478,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJMbvTxDmAblcRm_hEdvF 105.013478!2d39.62581!1m5!1m1!1sChIJ06br1RqAblcRAjyWXdIXZaw!2m2!1d-105.0233105!2d39.6435918!3e1

https://www.google.com/maps/dir/St.+Nicks+Christmas+and+Collectibles/Royal+Sup 105.0155267,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJ0alPujCAblcRjcf_zxYfiq 105.0155267!2d39.6225114!1m5!1m1!1sChIJ06br1RqAblcRAjyWXdIXZaw!2m2!1d-105.0233105!2d39.6435918!3e3

https://www.google.com/maps/dir/U.S.+Bank+ATM/Royal+Supply+South/@39.656009 105.0508859,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJUwi2ThmAa4cRy6Hutfo 105.0508859!2d39.6560093!1m5!1m1!1sChIJ06br1RqAblcRAjyWXdIXZaw!2m2!1d105.0233105!2d39.6435918!3e0

https://www.google.com/maps/dir/Walgreens/Royal+Supply+South/@39.6246603,-105.0200245,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sChIJ8zuXzzqAblcRPsc0NxgE 105.0200245!2d39.6246603!1m5!1m1!1sChIJ06br1RqAblcRAjyWXdIXZaw!2m2!1d-105.0233105!2d39.6435918!3e2

Driving Directions From Clock Tower Tours to Royal Supply South

Driving Directions From Big Blue Bear to Royal Supply South

Driving Directions From The Aurora Highlands North Sculpture to Royal Supply South

Driving Directions From Clock Tower Tours to Royal Supply South

Driving Directions From Colorado Freedom Memorial to Royal Supply South

Driving Directions From Cherry Creek Valley Ecological Park to Royal Supply South

https://www.google.com/maps/dir/Wings+Over+the+Rockies+Air+%26+Space+Museu 104.8955075,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-104.8955075!2d39.7208907!1m5!1m1!1sChIJ06br1RqAblcRAjyWXdIXZaw!2m2!1d-105.0233105!2d39.6435918!3e0

https://www.google.com/maps/dir/Blue+Grama+Grass+Park/Royal+Supply+South/@3 104.7522925,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-104.7522925!2d39.655534!1m5!1m1!1sChIJ06br1RqAblcRAjyWXdIXZaw!2m2!1d-105.0233105!2d39.6435918!3e2

https://www.google.com/maps/dir/Wings+Over+the+Rockies+Air+%26+Space+Museu 104.8955075,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-104.8955075!2d39.7208907!1m5!1m1!1sChIJ06br1RqAblcRAjyWXdIXZaw!2m2!1d-105.0233105!2d39.6435918!3e1 https://www.google.com/maps/dir/Cherry+Creek+Valley+Ecological+Park/Royal+Supp 104.8038771,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-104.8038771!2d39.5822885!1m5!1m1!1sChIJ06br1RqAblcRAjyWXdIXZaw!2m2!1d-105.0233105!2d39.6435918!3e3

https://www.google.com/maps/dir/Meow+Wolf+Denver+%7C+Convergence+Station/R 105.0156539,14z/data=!3m1!4b1!4m14!4m13!1m5!1m1!1sunknown!2m2!1d-105.0156539!2d39.7408092!1m5!1m1!1sChIJ06br1RqAblcRAjyWXdIXZaw!2m2!1d-105.0233105!2d39.6435918!3e0

Reviews for Royal Supply South

Transferring Warranty Benefits to New Owners View GBP

Check our other pages :

- Planning Around Existing Plumbing or Gas Lines
- Verifying Electrical Capacity for New Units
- Selecting Clauses that Cover Seasonal Tuneups
- Comparing Basic and Extended Coverage Options

Frequently Asked Questions

Can the warranty for a mobile home HVAC system be transferred to a new owner?

Typically, whether an HVAC systems warranty can be transferred to a new owner depends on the manufacturers policy. Some warranties are transferable, but it often requires notifying the manufacturer or registering the transfer within a specified time frame after the sale. What steps need to be taken to ensure the warranty is successfully transferred to a new owner?

To transfer the warranty, you usually need to provide proof of ownership change, complete any necessary forms provided by the manufacturer, and possibly pay a transfer fee. Its important to check specific requirements outlined in the original warranty documentation.

Are there any limitations or changes in coverage when an HVAC systems warranty is transferred?

Yes, some manufacturers may impose limitations on coverage once an HVAC systems warranty is transferred. This could include reduced coverage terms or exclusions of certain components. Always review both the original and any revised terms after transfer carefully.

Royal Supply Inc

Phone : +16362969959

City : Wichita

State : KS

Zip : 67216

Address : Unknown Address

Google Business Profile

Company Website : https://royal-durhamsupply.com/locations/wichita-kansas/

Sitemap

Privacy Policy

<u>About Us</u>