Planning Around Existing Plumbing or Gas Lines

Planning Around Existing Plumbing or Gas Lines

Overview of mobile home HVAC systems and their components

When embarking on a renovation or construction project, the excitement of transforming a space often takes center stage. However, beneath the surface lies an intricate network of plumbing and gas lines that demands careful consideration. Energy-efficient HVAC systems reduce utility costs for mobile home owners Mobile Home Furnace Installation allergen. Overlooking these critical elements can lead to unforeseen complications, increased costs, and potential safety hazards. Therefore, understanding the importance of planning around existing plumbing and gas lines is not only prudent but essential for a successful project.


To begin with, existing plumbing and gas lines serve as the lifeline of any building. They ensure that water and energy flow seamlessly to support daily activities. When planning renovations or new constructions, it is crucial to respect these established pathways to maintain their integrity and functionality. Any disruption or damage can result in costly repairs or replacements, which could otherwise be avoided with careful planning.


Moreover, integrating existing systems into new designs requires a nuanced approach that balances creativity with practicality. Architects and designers must work closely with engineers and contractors to assess the current layout of pipes and gas lines. This collaboration ensures that any proposed changes do not interfere with or compromise these systems. By doing so, they can create innovative solutions that enhance the space without sacrificing utility or efficiency.


Safety is another paramount concern when dealing with plumbing and gas lines. Gas leaks pose serious risks including fires or explosions if accidentally punctured during construction. Similarly, improperly handled water lines can lead to flooding or water damage. Thus, thorough inspections by qualified professionals are imperative before initiating any work near these installations.


Additionally, considering existing infrastructure often leads to more sustainable practices by reducing waste associated with unnecessary demolitions or relocations of piping systems. It encourages adaptive reuse strategies where possible-preserving resources while achieving aesthetic goals.


Finally yet importantly is compliance: adhering strictly not just for safety reasons but also because local building codes mandate specific standards regarding how close one may build relative towards such utilities-failure here could result in legal repercussions alongside financial penalties too!


In conclusion then - when you take time upfront recognizing significance surrounding pre-existing pipelines within context broader architectural endeavors-you safeguard both structural integrity long-term value proposition contained therein!

When embarking on a renovation or construction project, one of the most crucial steps is assessing the current layout of plumbing and gas lines. This initial evaluation is not only essential for ensuring safety but also for optimizing the design and functionality of the space. Understanding the existing infrastructure can significantly influence planning decisions, helping to avoid costly mistakes and unnecessary complications down the road.


The first step in this assessment process involves a thorough inspection. It is essential to locate all existing plumbing and gas lines, often hidden behind walls or beneath floors. This task may require consulting blueprints if available or employing advanced tools like pipe locators to map out these critical systems accurately. A detailed understanding of their paths allows for smarter planning, ensuring that new installations do not interfere with these established routes.


Once the layout is clearly understood, it becomes possible to evaluate its condition. Checking for any signs of wear and tear, leaks, or outdated materials that might not comply with current codes should be prioritized. Older pipes may need replacement due to corrosion or inefficiency, while newer ones might only require minor adjustments for integration into the new design. This phase ensures that any changes made will be built upon a solid foundation that meets modern standards.


Next comes the challenge of integrating new designs with existing systems. This step demands both creativity and practicality from those involved in planning. For example, when designing a new kitchen or bathroom layout, considerations must include where fixtures like sinks and stoves will align with existing water and gas supplies. Thoughtful planning can minimize rerouting needs, saving both time and money while maintaining aesthetic appeal.


Furthermore, collaboration with professionals such as plumbers or contractors during this stage can provide invaluable insights into what is feasible within the given constraints. Their expertise can guide decision-making processes regarding whether to adapt designs around current layouts or undertake more extensive renovations that involve moving major pipelines.


Safety remains paramount throughout this entire process. Any modifications involving gas lines must adhere strictly to safety regulations due to their potential hazards if mishandled. Similarly, ensuring proper drainage systems are maintained prevents future problems such as blockages or backflows, which could cause significant damage.


In conclusion, assessing the current layout of plumbing and gas lines is an indispensable part of planning around existing infrastructures in any building project. By thoroughly inspecting these systems' paths and conditions before commencing work, individuals can make informed decisions that integrate seamlessly with their desired outcomes while prioritizing efficiency and safety at every turn. Through careful consideration and expert guidance where necessary, successful projects emerge-ones that respect both functional imperatives and creative aspirations alike.

More About Us

What Yelp Says About Us

How to reach us


How service contracts can lower HVAC repair costs in mobile homes

How service contracts can lower HVAC repair costs in mobile homes

Choosing the right service provider for HVAC maintenance in mobile homes is crucial, particularly when it comes to leveraging service contracts to lower repair costs.. Mobile homes often have unique heating and cooling needs due to their size and construction, making it essential to partner with a provider who understands these specific requirements. Firstly, begin by researching potential service providers who specialize in mobile home HVAC systems.

Posted by on 2024-12-28

Considerations for maintaining structural integrity during HVAC installation

Modifying existing systems for HVAC installation presents a myriad of challenges, especially when it involves planning around existing plumbing or gas lines. These challenges necessitate careful consideration and strategic planning to ensure successful integration without compromising the functionality of either the HVAC system or the pre-existing structures.


One of the primary challenges in this scenario is navigating spatial constraints. Buildings, particularly older ones, often have complex layouts where plumbing and gas lines are intricately woven into walls, floors, and ceilings. This complexity can limit available space for new HVAC components such as ducts and vents. Consequently, professionals must conduct thorough assessments to map out these existing systems accurately before any modifications begin. Such assessments help in devising strategies that avoid interference with these critical lines while still achieving optimal placement for HVAC components.


Another significant challenge is the potential risk of damaging existing plumbing or gas lines during installation. Even minor errors can lead to major disruptions, such as leaks or bursts which could cause water damage or pose safety hazards due to gas leaks. Therefore, precision is paramount during installation processes. Skilled technicians often employ advanced technologies such as sensors and imaging tools to detect and monitor plumbing and gas pipelines' exact locations, minimizing the risk of accidental damage.


Furthermore, compliance with building codes and regulations adds another layer of complexity. Different regions have specific codes governing how close HVAC installations can be situated relative to plumbing and gas lines. Adhering to these regulations ensures not only legal compliance but also enhances safety standards within the building environment. Navigating these regulatory requirements demands a comprehensive understanding from all involved personnel.


Cost implications cannot be overlooked when modifying existing systems for HVAC installation around plumbing or gas lines. The financial burden can be substantial due to potential needs for rerouting pipes or reinforcing structural elements to accommodate new equipment safely. Budgeting must account for possible contingencies arising from unexpected complications discovered during modification work.


Moreover, effective communication among stakeholders is crucial throughout this process-ranging from architects and engineers who design solutions compatible with both old and new systems, to contractors executing those plans on-site under potentially challenging conditions.


In conclusion, modifying existing systems for HVAC installations near pre-existing plumbing or gas lines is fraught with challenges that demand meticulous planning and execution. By addressing spatial constraints wisely; employing technology judiciously; ensuring strict adherence to safety regulations; managing costs effectively; and fostering strong communication among project team members-all these efforts contribute towards overcoming obstacles inherent in integrating modern HVAC solutions into established infrastructure seamlessly yet safely.

Considerations for maintaining structural integrity during HVAC installation

Strategies for evenly distributing weight across the roof when adding or upgrading HVAC systems

When planning HVAC installations around existing plumbing or gas lines, the complexity of the task requires a strategic approach that ensures efficiency, safety, and compliance with regulatory standards. As these systems often coexist within the same infrastructure, understanding how to navigate around pre-existing elements is crucial for a successful installation. Here's an exploration of key strategies that can be employed in such scenarios.


First and foremost, conducting a thorough site assessment is essential. This involves detailed scrutiny of the building's current layout, including an accurate mapping of all plumbing and gas lines. By understanding their precise locations, you can identify potential conflicts and plan accordingly. The use of modern technology such as 3D scanning can aid in creating detailed models that provide valuable insights into spatial dynamics.


Collaboration with other professionals is another critical strategy. Engaging with plumbers or gas line experts during the planning phase allows for knowledge sharing and problem-solving that considers all aspects of the building's infrastructure. These collaborations often reveal practical solutions that may not have been apparent initially.


Moreover, flexibility in design plays a significant role in maneuvering around existing systems. Customizing ductwork or opting for flexible piping solutions can allow installations to adjust more easily to existing conditions without compromising performance or safety standards. In some cases, innovative product choices-such as ductless mini-split systems-might be suitable alternatives when traditional ductwork presents too many challenges.


Additionally, adherence to local codes and regulations is non-negotiable when dealing with HVAC installations near plumbing or gas lines. Ensuring compliance from the outset prevents future legal complications and guarantees that all work meets established safety criteria. Regular consultation with local authorities during the planning process helps keep projects aligned with these mandatory requirements.


Incorporating sustainability considerations into your strategy is also beneficial, especially when working within confined spaces dictated by existing lines. Opting for energy-efficient systems reduces operational costs over time and aligns with growing environmental consciousness among consumers and regulators alike.


Finally, contingency planning should not be overlooked. Unexpected issues are not uncommon when integrating new systems into older infrastructures; therefore, having backup plans ensures minimal disruption to project timelines and budgets should unforeseen obstacles arise.


In conclusion, strategically planning HVAC installations around existing plumbing or gas lines demands an integrated approach combining detailed assessments, professional collaboration, design flexibility, regulatory compliance, sustainability considerations, and robust contingency plans. By employing these strategies thoughtfully, installers can achieve seamless integration of modern HVAC solutions within complex infrastructural landscapes while ensuring optimal functionality and long-term reliability.

Potential risks of improper weight distribution on mobile home roofs and HVAC efficiency

When undertaking any construction or renovation project, it is crucial to prioritize safety considerations and compliance with regulations, especially when planning around existing plumbing or gas lines. This focus not only ensures the protection of workers and residents but also guarantees that the project adheres to legal standards, preventing future complications or liabilities.


One of the primary safety considerations when dealing with existing plumbing or gas lines is understanding their exact location and condition. Before any work begins, a thorough inspection should be conducted to map out these utilities accurately. Advanced tools like pipe locators and ground-penetrating radar can aid in this process, minimizing the risk of accidental damage. Such precautions help prevent dangerous situations like gas leaks or water damage, which could lead to costly repairs or even pose health hazards.


Moreover, workers should be adequately trained in handling these utilities. For instance, they need to be aware of how to shut off valves quickly in case of an emergency. Training sessions focused on recognizing signs of leaks or damage are essential for maintaining a safe working environment. Additionally, equipping workers with proper personal protective equipment (PPE) further enhances safety during the project.


Compliance with regulations is another critical aspect that cannot be overlooked. Various codes govern how construction projects interact with existing utility lines, often varying by jurisdiction. These regulations are designed not only for the immediate safety of those involved in a project but also for long-term community welfare. Ensuring that all permits are obtained before beginning work is vital; failing to do so can result in hefty fines and delays.


Collaborating with local utility companies can provide invaluable assistance in adhering to these regulations. These organizations often have detailed records of utility line placements and may offer guidance on best practices for working near them. In some cases, having a representative from the utility company present during key phases of the project might be required to ensure compliance.


Furthermore, advancements in technology have introduced new materials and methods that enhance both safety and regulatory adherence when planning around plumbing or gas lines. For example, trenchless technology allows for repairs and installations without significant disruption to existing systems, reducing both risk and environmental impact.


In conclusion, safely navigating construction projects around existing plumbing or gas lines involves meticulous planning and adherence to established regulations. By prioritizing thorough inspections, worker training, collaboration with utility providers, and leveraging modern technologies, developers can ensure projects are completed safely while upholding legal responsibilities. Such diligence not only protects individuals involved but also contributes positively to broader community safety and infrastructure integrity.

Guidelines for professional assessment and installation to ensure balanced weight distribution

When undertaking a renovation or construction project, the planning phase is crucial, especially when dealing with existing plumbing or gas lines. The complexity of these systems demands careful consideration of cost implications and budgeting for modifications to ensure the project is both financially feasible and technically sound.


Existing plumbing and gas lines can significantly impact the overall budget of a renovation project. These systems are often hidden behind walls or beneath floors, making any modification potentially invasive and costly. The first step in budgeting for such modifications is conducting a thorough assessment of the current infrastructure. This involves consulting with experienced professionals who can provide detailed insights into the condition, layout, and compliance issues related to existing systems.


Cost implications for modifying plumbing or gas lines can vary widely depending on several factors. For instance, relocating a gas line might require specialized labor due to safety concerns and regulatory requirements, which can increase costs significantly. Similarly, rerouting plumbing might involve extensive demolition and reconstruction efforts that further inflate expenses. Understanding these potential costs upfront allows homeowners and project managers to allocate funds more accurately within their budgets.


Another important aspect of budgeting around existing plumbing or gas lines is considering contingency plans for unexpected expenses. Renovation projects are notorious for unforeseen challenges; old pipes may be found to be corroded beyond repair, or outdated materials may not meet current safety standards. Setting aside a portion of the budget as a contingency fund helps mitigate financial strain when such surprises inevitably occur.


Moreover, choosing between repairing existing systems versus completely replacing them also impacts budgeting decisions. While initial assessments may suggest that repairs are sufficient, long-term considerations should be factored in as well-newer installations might offer greater efficiency and reliability, potentially resulting in savings over time despite higher upfront costs.


In addition to direct modification expenses, indirect costs should also be considered in the budget plan. These include permits required by local authorities for any changes made to plumbing or gas lines, as well as potential temporary relocation expenses if water or heating services need to be interrupted during construction.


Ultimately, effective cost management in projects involving existing plumbing or gas lines relies on meticulous planning and informed decision-making. By thoroughly understanding the scope of necessary modifications and their associated costs-and by preparing for unforeseen developments-homeowners can better control their budgets while ensuring that renovations proceed smoothly and safely.


In summary, addressing the cost implications and budgeting for modifications around existing plumbing or gas lines requires careful evaluation of current systems, strategic allocation of funds-including contingencies-and an informed approach to deciding between repair versus replacement options. Through this comprehensive planning process, stakeholders can achieve successful project outcomes without compromising financial stability.

When planning a renovation or any new construction project, one of the most critical aspects to consider is the existing plumbing or gas lines. These systems are essential for the functionality and safety of any building, and working around them requires careful planning and coordination with professionals. Here are some tips for ensuring a seamless integration while preserving the integrity of these vital systems.


First and foremost, it is crucial to engage with experienced, licensed professionals from the outset of your project. Plumbers and gas fitters possess specialized knowledge that is indispensable when dealing with existing lines. They can provide insights into potential challenges you might face and suggest viable solutions that adhere to building codes and safety regulations. Additionally, their expertise will help prevent costly mistakes that could arise from improper handling or rerouting of these utilities.


Communication is key when working with professionals in this field. Clearly articulate your goals and vision for the project, ensuring they fully understand what you hope to achieve. This open dialogue allows them to offer advice on how best to accommodate existing plumbing or gas lines within your design plans. It also fosters a collaborative environment where both parties can contribute ideas and solutions.


One practical tip is to request a detailed assessment of the current plumbing or gas line layout before commencing any work. This assessment should include an inspection report outlining the condition and configuration of existing systems. With this information at hand, both you and your team can make informed decisions about how to proceed without compromising safety or functionality.


Flexibility in design plans may be necessary when working around existing infrastructure. Be prepared to adjust layouts if certain aspects prove unfeasible due to fixed utility placements. While this might seem like an inconvenience initially, maintaining flexibility ensures that you can still achieve your desired outcome without encountering significant delays or added expenses.


Incorporating modern technology into your planning process can also be beneficial. For example, utilizing 3D modeling software allows you to visualize proposed changes within the context of existing plumbing or gas lines more accurately than traditional blueprints might allow. This approach helps identify potential issues early on, providing an opportunity to address them proactively rather than reactively.


Throughout the project, prioritize safety above all else. Ensure that all work complies with local regulations regarding plumbing and gas installations; non-compliance not only poses serious risks but could also lead to legal ramifications down the line.


Finally, establish a strong relationship with your chosen professionals by showing appreciation for their expertise throughout each stage of development-from initial consultation through final installation checks-and remain open-minded towards their recommendations even if they require slight modifications from original plans.


By following these guidelines-engaging qualified experts early on; communicating clearly; conducting thorough assessments; remaining adaptable during design phases; leveraging technological tools effectively; prioritizing safety standards consistently-you'll pave way toward seamless integration between new construction elements while respecting pre-existing infrastructures' complexities intricacies alike!

A modern "triple wide" home

Manufactured housing (commonly known as mobile homes in the United States) is a type of prefabricated housing that is largely assembled in factories and then transported to sites of use. The definition of the term in the United States is regulated by federal law (Code of Federal Regulations, 24 CFR 3280): "Manufactured homes are built as dwelling units of at least 320 square feet (30 m2) in size with a permanent chassis to assure the initial and continued transportability of the home."[1] The requirement to have a wheeled chassis permanently attached differentiates "manufactured housing" from other types of prefabricated homes, such as modular homes.

United States

[edit]

Definition

[edit]

According to the Manufactured Housing Institute's National Communities Council (MHINCC), manufactured homes[2]

are homes built entirely in the factory under a federal building code administered by the U.S. Department of Housing and Urban Development (HUD). The Federal Manufactured Home Construction and Safety Standards (commonly known as the HUD Code) went into effect June 15, 1976. Manufactured homes may be single- or multi-section and are transported to the site and installed.

The MHINCC distinguishes among several types of factory-built housing: manufactured homes, modular homes, panelized homes, pre-cut homes, and mobile homes.

From the same source, mobile home "is the term used for manufactured homes produced prior to June 15, 1976, when the HUD Code went into effect."[2] Despite the formal definition, mobile home and trailer are still common terms in the United States for this type of housing.

History

[edit]

The original focus of this form of housing was its ability to relocate easily. Units were initially marketed primarily to people whose lifestyle required mobility. However, beginning in the 1950s, these homes began to be marketed primarily as an inexpensive form of housing designed to be set up and left in a location for long periods of time, or even permanently installed with a masonry foundation. Previously, units had been eight feet or less in width, but in 1956, the 10-foot (3.0 m) wide home was introduced. This helped solidify the line between mobile and house/travel trailers, since the smaller units could be moved simply with an automobile, but the larger, wider units required the services of a professional trucking company. In the 1960s and '70s, the homes became even longer and wider, making the mobility of the units more difficult. Today, when a factory-built home is moved to a location, it is usually kept there permanently. The mobility of the units has decreased considerably.

The factory-built homes of the past developed a negative stereotype because of their lower cost and the tendency for their value to depreciate more quickly than site-built homes. The tendency of these homes to rapidly depreciate in resale value made using them as collateral for loans far riskier than traditional home loans. Loan terms were usually limited to less than the 30-year term typical of the general home-loan market, and interest rates were considerably higher. In other words, these home loans resembled motor vehicle loans far more than traditional home mortgages. They have been consistently linked to lower-income families, which has led to prejudice and zoning restrictions, which include limitations on the number and density of homes permitted on any given site, minimum size requirements, limitations on exterior colors and finishes, and foundation mandates.

Many jurisdictions do not allow the placement of any additional factory-built homes, while others have strongly limited or forbidden all single-wide models, which tend to depreciate more rapidly than modern double-wide models. The derogatory concept of a "trailer park" is typically older single-wide homes occupying small, rented lots and remaining on wheels, even if the home stays in place for decades.

Modern manufactured homes

[edit]
A manufactured house ready to be assembled in Grass Valley, California

Modern homes, especially modular homes, belie this image and can be identical in appearance to site-built homes. Newer homes, particularly double-wides, tend to be built to much higher standards than their predecessors. This has led to a reduction in the rate of value depreciation of many used units.

A manufactured house just before construction of its garage
Stick built garage being added to a new manufactured house

Although great strides have been made in terms of quality, manufactured homes do still struggle with construction problems. Author Wes Johnson has pointed out that the HUD code which governs manufactured homes desperately needs to be updated, quality control at manufacturing facilities are often lax, and set-up issues often compromise even a well-made manufactured home. Johnson states buyers need to be exceptionally cautious if they are entertaining the idea of purchasing any manufactured home by carefully checking it for defects before signing the contract and supervising the set-up process closely. These homes in the modern age are built to be beautiful and last longer than the typical old trailers.[citation needed]

When FEMA studied the destruction wrought by Hurricane Andrew in Dade County Florida, they concluded that modular and masonry homes fared best compared to other construction.[3]

High-performance manufactured housing

[edit]

While manufactured homes are considered to be affordable housing, older models can be some of the most expensive in the nation to heat due to energy inefficiency.[4] High-performance manufactured housing uses less energy and therefore increases life-cycle affordability by decreasing operating costs. High-performance housing is not only energy efficient, but also attractive, functional, water-efficient, resilient to wind, seismic forces, and moisture penetration, and has healthy indoor environmental quality. Achieving high-performance involves integrated, whole building design, involving many components, not one single technology. High–performance manufactured housing should also include energy efficient appliances, such as Energy Star qualified appliances.[4] Energy Star requires ample insulation: 2x6 walls: R21, roof: R40, floor: R33.

Difference from modular homes

[edit]

Both types of homes - manufactured and modular - are commonly referred to as factory-built housing, but they are not identical. Modular homes are built to International Residential Code (IRC) code. Modular homes can be transported on flatbed trucks rather than being towed, and can lack axles and an automotive-type frame. However, some modular houses are towed behind a semi-truck or toter on a frame similar to that of a trailer. The house is usually in two pieces and is hauled by two separate trucks. Each frame has five or more axles, depending on the size of the house. Once the house has reached its location, the axles and the tongue of the frame are then removed, and the house is set on a concrete foundation by a large crane. Some modern modular homes, once fully assembled, are indistinguishable from site-built homes. In addition, modular homes:

  • must conform to the same local, state and regional building codes as homes built on-site;
  • are treated the same by banks as homes built on-site. They are easily refinanced, for example;
  • must be structurally approved by inspectors;
  • can be of any size, although the block sections from which they are assembled are uniformly sized;[5][6]

Difference from IRC codes homes (site built)

[edit]

Manufactured homes have several standard requirements that are more stringent than International Residential Code homes.

Fire Protection

A National Fire Protection Association (NFPA) study from July 2011 shows that occurrence of fires is lower in manufactured housing and the injury rate is lower in manufactured housing. The justification behind the superior fire safety is due to the following higher standard requirements:

  • The HUD standard requires a flame spread of 25 or less in water heater and furnace compartments.
  • The HUD standard requires a flame spread of 50 or less on the wall behind the range.
  • The HUD standard requires a flame spread of 75 or less on the ceilings.
  • The HUD standard requires a flame spread of 25 or less to protect the bottoms and side of kitchen cabinets around the range.
  • The HUD standard requires additional protection of cabinets above the range.
  • The HUD standard requires trim larger than 6" to meet flame spread requirements.
  • The HUD standard requires smoke detectors in the general living area.
  • The HUD standard requires 2 exterior doors.
  • The HUD standard requires bedroom doors to be within 35 feet of an exterior door.

Bay Area

[edit]

The San Francisco Bay Area, located in Northern California, is known for its high real estate prices, making manufactured housing an increasingly popular alternative to traditional real estate.[7] It is mainly the value of the land that makes real estate in this area so expensive. As of May 2011, the median price of a home in Santa Clara was $498,000,[8] while the most expensive manufactured home with all the premium features was only $249,000.[9] This drastic price difference is due to the fact that manufactured homes are typically placed in communities where individuals do not own the land, but instead pay a monthly site fee. This enables a consumer, who could otherwise not afford to live in the Bay Area, the opportunity to own a new home in this location. There are various communities of manufactured homes in the Bay Area, the largest being Casa de Amigos, located in Sunnyvale, California.

Australia

[edit]
An Australian modern prefabricated house

In Australia these homes are commonly known as transportable homes, relocatable homes or prefabricated homes (not to be confused with the American meaning of the term). They are not as common as in the US, but the industry is expected to grow as this method of construction becomes more accepted.

Manufactured home parks refer to housing estates where the house owner rents the land instead of owning it. This is quite common in Queensland in both the form of tourist parks and over fifty estates. The term transportable homes tends to be used to refer to houses that are built on land that is owned by the house owner.[citation needed]

Typically the homes are built in regional areas where the cost of organizing tradespeople and materials is higher than in the cities. In particular prefabricated homes have been popular in mining towns or other towns experiencing demand for new housing in excess of what can be handled by local builders. This method of construction is governed by state construction legislation and is subject to local council approval and homeowners' warranty or home warranty insurance.

Construction process

[edit]

A manufactured home is built entirely inside a huge, climate-controlled factory by a team of craftsmen. The first step in the process is the flooring, which is built in sections, each attached to a permanent chassis with its own wheels and secured for transport upon the home's completion. Depending on the size of the house and the floorplan's layout, there may be two, three or even four sections. The flooring sections have heating, electrical and plumbing connections pre-installed before they are finished with laminate, tile or hardwood. Next, the walls are constructed on a flat level surface with insulation and interior Sheetrock before being lifted by crane into position and secured to the floor sections. The interior ceilings and roof struts are next, vapor sealed and secured to each section's wall frame before being shingled. Then, the exterior siding is added, along with the installation of doors and windows. Finally, interior finishing, such as sealing the drywall, is completed, along with fixture installation and finishing the electrical and plumbing connections. The exposed portions of each section, where they will eventually be joined together, are wrapped in plastic to protect them for transport.

With all the building site prep work completed, the building will be delivered by trucks towing the individual sections on their permanent chassis. The sections will be joined together securely, and all final plumbing and electrical connections are made before a decorative skirt or facade is applied to the bottom exterior of the house, hiding the chassis and finishing off the look of the home.

See also

[edit]
  • Modular home
  • Prefabrication
  • Prefabricated home
  • Reefer container housing units
  • British post-war temporary prefab houses
  • HUD USER
  • Regulatory Barriers Clearinghouse
  • Lustron house
  • Cardinal Industries, Inc.
  • Dymaxion house
  • Excel Homes
  • All American Homes
  • All Parks Alliance for Change

References

[edit]
  1. ^ "HUD.gov / U.S. Department of Housing and Urban Development (HUD)". portal.hud.gov. Archived from the original on 2017-05-14. Retrieved 2020-03-24.
  2. ^ a b "What is a Manufactured Home?" Manufactured Housing Institute's National Communities Council, accessed 6 July 2011 Archived 23 March 2012 at the Wayback Machine
  3. ^ "FIA 22, Mitigation Assessment Team Report: Hurricane Andrew in Florida (1993) - FEMA.gov". www.fema.gov.
  4. ^ a b Environmental and Energy Study Institute. "Issue Brief: High-Performance Manufactured Housing". eesi.org. Retrieved August 2, 2011.
  5. ^ https://homenation.com/mobile-vs-modular/ Modular home vs Manufactured home
  6. ^ Kit Homes Guide
  7. ^ "2011 Coldwell Banker U.S. Home Listing Report". Coldwell Banker. Retrieved 6 July 2011.
  8. ^ "Bay Area May Home Sales, Median Price Inch Up From April; Fall below 2010". DataQuick. Retrieved 6 July 2011.
  9. ^ "Sunnyvale Model Home". Alliance Manufactured Homes. Archived from the original on 18 July 2011. Retrieved 6 July 2011.

 

Tubular heat exchanger
Partial view into inlet plenum of shell and tube heat exchanger of a refrigerant based chiller for providing air-conditioning to a building

A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes.[1] The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact.[2] They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage treatment. The classic example of a heat exchanger is found in an internal combustion engine in which a circulating fluid known as engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air. Another example is the heat sink, which is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant.[3]

Flow arrangement

[edit]
Countercurrent (A) and parallel (B) flows

There are three primary classifications of heat exchangers according to their flow arrangement. In parallel-flow heat exchangers, the two fluids enter the exchanger at the same end, and travel in parallel to one another to the other side. In counter-flow heat exchangers the fluids enter the exchanger from opposite ends. The counter current design is the most efficient, in that it can transfer the most heat from the heat (transfer) medium per unit mass due to the fact that the average temperature difference along any unit length is higher. See countercurrent exchange. In a cross-flow heat exchanger, the fluids travel roughly perpendicular to one another through the exchanger.

For efficiency, heat exchangers are designed to maximize the surface area of the wall between the two fluids, while minimizing resistance to fluid flow through the exchanger. The exchanger's performance can also be affected by the addition of fins or corrugations in one or both directions, which increase surface area and may channel fluid flow or induce turbulence.

The driving temperature across the heat transfer surface varies with position, but an appropriate mean temperature can be defined. In most simple systems this is the "log mean temperature difference" (LMTD). Sometimes direct knowledge of the LMTD is not available and the NTU method is used.

Types

[edit]

Double pipe heat exchangers are the simplest exchangers used in industries. On one hand, these heat exchangers are cheap for both design and maintenance, making them a good choice for small industries. On the other hand, their low efficiency coupled with the high space occupied in large scales, has led modern industries to use more efficient heat exchangers like shell and tube or plate. However, since double pipe heat exchangers are simple, they are used to teach heat exchanger design basics to students as the fundamental rules for all heat exchangers are the same.

1. Double-pipe heat exchanger

When one fluid flows through the smaller pipe, the other flows through the annular gap between the two pipes. These flows may be parallel or counter-flows in a double pipe heat exchanger.

(a) Parallel flow, where both hot and cold liquids enter the heat exchanger from the same side, flow in the same direction and exit at the same end. This configuration is preferable when the two fluids are intended to reach exactly the same temperature, as it reduces thermal stress and produces a more uniform rate of heat transfer.

(b) Counter-flow, where hot and cold fluids enter opposite sides of the heat exchanger, flow in opposite directions, and exit at opposite ends. This configuration is preferable when the objective is to maximize heat transfer between the fluids, as it creates a larger temperature differential when used under otherwise similar conditions.[citation needed]

The figure above illustrates the parallel and counter-flow flow directions of the fluid exchanger.

2. Shell-and-tube heat exchanger

In a shell-and-tube heat exchanger, two fluids at different temperatures flow through the heat exchanger. One of the fluids flows through the tube side and the other fluid flows outside the tubes, but inside the shell (shell side).

Baffles are used to support the tubes, direct the fluid flow to the tubes in an approximately natural manner, and maximize the turbulence of the shell fluid. There are many various kinds of baffles, and the choice of baffle form, spacing, and geometry depends on the allowable flow rate of the drop in shell-side force, the need for tube support, and the flow-induced vibrations. There are several variations of shell-and-tube exchangers available; the differences lie in the arrangement of flow configurations and details of construction.

In application to cool air with shell-and-tube technology (such as intercooler / charge air cooler for combustion engines), fins can be added on the tubes to increase heat transfer area on air side and create a tubes & fins configuration.

3. Plate Heat Exchanger

A plate heat exchanger contains an amount of thin shaped heat transfer plates bundled together. The gasket arrangement of each pair of plates provides two separate channel system. Each pair of plates form a channel where the fluid can flow through. The pairs are attached by welding and bolting methods. The following shows the components in the heat exchanger.

In single channels the configuration of the gaskets enables flow through. Thus, this allows the main and secondary media in counter-current flow. A gasket plate heat exchanger has a heat region from corrugated plates. The gasket function as seal between plates and they are located between frame and pressure plates. Fluid flows in a counter current direction throughout the heat exchanger. An efficient thermal performance is produced. Plates are produced in different depths, sizes and corrugated shapes. There are different types of plates available including plate and frame, plate and shell and spiral plate heat exchangers. The distribution area guarantees the flow of fluid to the whole heat transfer surface. This helps to prevent stagnant area that can cause accumulation of unwanted material on solid surfaces. High flow turbulence between plates results in a greater transfer of heat and a decrease in pressure.

4. Condensers and Boilers Heat exchangers using a two-phase heat transfer system are condensers, boilers and evaporators. Condensers are instruments that take and cool hot gas or vapor to the point of condensation and transform the gas into a liquid form. The point at which liquid transforms to gas is called vaporization and vice versa is called condensation. Surface condenser is the most common type of condenser where it includes a water supply device. Figure 5 below displays a two-pass surface condenser.

The pressure of steam at the turbine outlet is low where the steam density is very low where the flow rate is very high. To prevent a decrease in pressure in the movement of steam from the turbine to condenser, the condenser unit is placed underneath and connected to the turbine. Inside the tubes the cooling water runs in a parallel way, while steam moves in a vertical downward position from the wide opening at the top and travel through the tube. Furthermore, boilers are categorized as initial application of heat exchangers. The word steam generator was regularly used to describe a boiler unit where a hot liquid stream is the source of heat rather than the combustion products. Depending on the dimensions and configurations the boilers are manufactured. Several boilers are only able to produce hot fluid while on the other hand the others are manufactured for steam production.

Shell and tube

[edit]
A shell and tube heat exchanger
Shell and tube heat exchanger

Shell and tube heat exchangers consist of a series of tubes which contain fluid that must be either heated or cooled. A second fluid runs over the tubes that are being heated or cooled so that it can either provide the heat or absorb the heat required. A set of tubes is called the tube bundle and can be made up of several types of tubes: plain, longitudinally finned, etc. Shell and tube heat exchangers are typically used for high-pressure applications (with pressures greater than 30 bar and temperatures greater than 260 °C).[4] This is because the shell and tube heat exchangers are robust due to their shape.
Several thermal design features must be considered when designing the tubes in the shell and tube heat exchangers: There can be many variations on the shell and tube design. Typically, the ends of each tube are connected to plenums (sometimes called water boxes) through holes in tubesheets. The tubes may be straight or bent in the shape of a U, called U-tubes.

  • Tube diameter: Using a small tube diameter makes the heat exchanger both economical and compact. However, it is more likely for the heat exchanger to foul up faster and the small size makes mechanical cleaning of the fouling difficult. To prevail over the fouling and cleaning problems, larger tube diameters can be used. Thus to determine the tube diameter, the available space, cost and fouling nature of the fluids must be considered.
  • Tube thickness: The thickness of the wall of the tubes is usually determined to ensure:
    • There is enough room for corrosion
    • That flow-induced vibration has resistance
    • Axial strength
    • Availability of spare parts
    • Hoop strength (to withstand internal tube pressure)
    • Buckling strength (to withstand overpressure in the shell)
  • Tube length: heat exchangers are usually cheaper when they have a smaller shell diameter and a long tube length. Thus, typically there is an aim to make the heat exchanger as long as physically possible whilst not exceeding production capabilities. However, there are many limitations for this, including space available at the installation site and the need to ensure tubes are available in lengths that are twice the required length (so they can be withdrawn and replaced). Also, long, thin tubes are difficult to take out and replace.
  • Tube pitch: when designing the tubes, it is practical to ensure that the tube pitch (i.e., the centre-centre distance of adjoining tubes) is not less than 1.25 times the tubes' outside diameter. A larger tube pitch leads to a larger overall shell diameter, which leads to a more expensive heat exchanger.
  • Tube corrugation: this type of tubes, mainly used for the inner tubes, increases the turbulence of the fluids and the effect is very important in the heat transfer giving a better performance.
  • Tube Layout: refers to how tubes are positioned within the shell. There are four main types of tube layout, which are, triangular (30°), rotated triangular (60°), square (90°) and rotated square (45°). The triangular patterns are employed to give greater heat transfer as they force the fluid to flow in a more turbulent fashion around the piping. Square patterns are employed where high fouling is experienced and cleaning is more regular.
  • Baffle Design: baffles are used in shell and tube heat exchangers to direct fluid across the tube bundle. They run perpendicularly to the shell and hold the bundle, preventing the tubes from sagging over a long length. They can also prevent the tubes from vibrating. The most common type of baffle is the segmental baffle. The semicircular segmental baffles are oriented at 180 degrees to the adjacent baffles forcing the fluid to flow upward and downwards between the tube bundle. Baffle spacing is of large thermodynamic concern when designing shell and tube heat exchangers. Baffles must be spaced with consideration for the conversion of pressure drop and heat transfer. For thermo economic optimization it is suggested that the baffles be spaced no closer than 20% of the shell's inner diameter. Having baffles spaced too closely causes a greater pressure drop because of flow redirection. Consequently, having the baffles spaced too far apart means that there may be cooler spots in the corners between baffles. It is also important to ensure the baffles are spaced close enough that the tubes do not sag. The other main type of baffle is the disc and doughnut baffle, which consists of two concentric baffles. An outer, wider baffle looks like a doughnut, whilst the inner baffle is shaped like a disk. This type of baffle forces the fluid to pass around each side of the disk then through the doughnut baffle generating a different type of fluid flow.
  • Tubes & fins Design: in application to cool air with shell-and-tube technology (such as intercooler / charge air cooler for combustion engines), the difference in heat transfer between air and cold fluid can be such that there is a need to increase heat transfer area on air side. For this function fins can be added on the tubes to increase heat transfer area on air side and create a tubes & fins configuration.

Fixed tube liquid-cooled heat exchangers especially suitable for marine and harsh applications can be assembled with brass shells, copper tubes, brass baffles, and forged brass integral end hubs.[citation needed] (See: Copper in heat exchangers).

Plate

[edit]
Conceptual diagram of a plate and frame heat exchanger
A single plate heat exchanger
An interchangeable plate heat exchanger directly applied to the system of a swimming pool

Another type of heat exchanger is the plate heat exchanger. These exchangers are composed of many thin, slightly separated plates that have very large surface areas and small fluid flow passages for heat transfer. Advances in gasket and brazing technology have made the plate-type heat exchanger increasingly practical. In HVAC applications, large heat exchangers of this type are called plate-and-frame; when used in open loops, these heat exchangers are normally of the gasket type to allow periodic disassembly, cleaning, and inspection. There are many types of permanently bonded plate heat exchangers, such as dip-brazed, vacuum-brazed, and welded plate varieties, and they are often specified for closed-loop applications such as refrigeration. Plate heat exchangers also differ in the types of plates that are used, and in the configurations of those plates. Some plates may be stamped with "chevron", dimpled, or other patterns, where others may have machined fins and/or grooves.

When compared to shell and tube exchangers, the stacked-plate arrangement typically has lower volume and cost. Another difference between the two is that plate exchangers typically serve low to medium pressure fluids, compared to medium and high pressures of shell and tube. A third and important difference is that plate exchangers employ more countercurrent flow rather than cross current flow, which allows lower approach temperature differences, high temperature changes, and increased efficiencies.

Plate and shell

[edit]

A third type of heat exchanger is a plate and shell heat exchanger, which combines plate heat exchanger with shell and tube heat exchanger technologies. The heart of the heat exchanger contains a fully welded circular plate pack made by pressing and cutting round plates and welding them together. Nozzles carry flow in and out of the platepack (the 'Plate side' flowpath). The fully welded platepack is assembled into an outer shell that creates a second flowpath ( the 'Shell side'). Plate and shell technology offers high heat transfer, high pressure, high operating temperature, compact size, low fouling and close approach temperature. In particular, it does completely without gaskets, which provides security against leakage at high pressures and temperatures.

Adiabatic wheel

[edit]

A fourth type of heat exchanger uses an intermediate fluid or solid store to hold heat, which is then moved to the other side of the heat exchanger to be released. Two examples of this are adiabatic wheels, which consist of a large wheel with fine threads rotating through the hot and cold fluids, and fluid heat exchangers.

Plate fin

[edit]

This type of heat exchanger uses "sandwiched" passages containing fins to increase the effectiveness of the unit. The designs include crossflow and counterflow coupled with various fin configurations such as straight fins, offset fins and wavy fins.

Plate and fin heat exchangers are usually made of aluminum alloys, which provide high heat transfer efficiency. The material enables the system to operate at a lower temperature difference and reduce the weight of the equipment. Plate and fin heat exchangers are mostly used for low temperature services such as natural gas, helium and oxygen liquefaction plants, air separation plants and transport industries such as motor and aircraft engines.

Advantages of plate and fin heat exchangers:

  • High heat transfer efficiency especially in gas treatment
  • Larger heat transfer area
  • Approximately 5 times lighter in weight than that of shell and tube heat exchanger. [citation needed]
  • Able to withstand high pressure

Disadvantages of plate and fin heat exchangers:

  • Might cause clogging as the pathways are very narrow
  • Difficult to clean the pathways
  • Aluminium alloys are susceptible to Mercury Liquid Embrittlement Failure

Finned tube

[edit]

The usage of fins in a tube-based heat exchanger is common when one of the working fluids is a low-pressure gas, and is typical for heat exchangers that operate using ambient air, such as automotive radiators and HVAC air condensers. Fins dramatically increase the surface area with which heat can be exchanged, which improves the efficiency of conducting heat to a fluid with very low thermal conductivity, such as air. The fins are typically made from aluminium or copper since they must conduct heat from the tube along the length of the fins, which are usually very thin.

The main construction types of finned tube exchangers are:

  • A stack of evenly-spaced metal plates act as the fins and the tubes are pressed through pre-cut holes in the fins, good thermal contact usually being achieved by deformation of the fins around the tube. This is typical construction for HVAC air coils and large refrigeration condensers.
  • Fins are spiral-wound onto individual tubes as a continuous strip, the tubes can then be assembled in banks, bent in a serpentine pattern, or wound into large spirals.
  • Zig-zag metal strips are sandwiched between flat rectangular tubes, often being soldered or brazed together for good thermal and mechanical strength. This is common in low-pressure heat exchangers such as water-cooling radiators. Regular flat tubes will expand and deform if exposed to high pressures but flat microchannel tubes allow this construction to be used for high pressures.[5]

Stacked-fin or spiral-wound construction can be used for the tubes inside shell-and-tube heat exchangers when high efficiency thermal transfer to a gas is required.

In electronics cooling, heat sinks, particularly those using heat pipes, can have a stacked-fin construction.

Pillow plate

[edit]

A pillow plate heat exchanger is commonly used in the dairy industry for cooling milk in large direct-expansion stainless steel bulk tanks. Nearly the entire surface area of a tank can be integrated with this heat exchanger, without gaps that would occur between pipes welded to the exterior of the tank. Pillow plates can also be constructed as flat plates that are stacked inside a tank. The relatively flat surface of the plates allows easy cleaning, especially in sterile applications.

The pillow plate can be constructed using either a thin sheet of metal welded to the thicker surface of a tank or vessel, or two thin sheets welded together. The surface of the plate is welded with a regular pattern of dots or a serpentine pattern of weld lines. After welding the enclosed space is pressurised with sufficient force to cause the thin metal to bulge out around the welds, providing a space for heat exchanger liquids to flow, and creating a characteristic appearance of a swelled pillow formed out of metal.

Waste heat recovery units

[edit]

A waste heat recovery unit (WHRU) is a heat exchanger that recovers heat from a hot gas stream while transferring it to a working medium, typically water or oils. The hot gas stream can be the exhaust gas from a gas turbine or a diesel engine or a waste gas from industry or refinery.

Large systems with high volume and temperature gas streams, typical in industry, can benefit from steam Rankine cycle (SRC) in a waste heat recovery unit, but these cycles are too expensive for small systems. The recovery of heat from low temperature systems requires different working fluids than steam.

An organic Rankine cycle (ORC) waste heat recovery unit can be more efficient at low temperature range using refrigerants that boil at lower temperatures than water. Typical organic refrigerants are ammonia, pentafluoropropane (R-245fa and R-245ca), and toluene.

The refrigerant is boiled by the heat source in the evaporator to produce super-heated vapor. This fluid is expanded in the turbine to convert thermal energy to kinetic energy, that is converted to electricity in the electrical generator. This energy transfer process decreases the temperature of the refrigerant that, in turn, condenses. The cycle is closed and completed using a pump to send the fluid back to the evaporator.

Dynamic scraped surface

[edit]

Another type of heat exchanger is called "(dynamic) scraped surface heat exchanger". This is mainly used for heating or cooling with high-viscosity products, crystallization processes, evaporation and high-fouling applications. Long running times are achieved due to the continuous scraping of the surface, thus avoiding fouling and achieving a sustainable heat transfer rate during the process.

Phase-change

[edit]
Typical kettle reboiler used for industrial distillation towers
Typical water-cooled surface condenser

In addition to heating up or cooling down fluids in just a single phase, heat exchangers can be used either to heat a liquid to evaporate (or boil) it or used as condensers to cool a vapor and condense it to a liquid. In chemical plants and refineries, reboilers used to heat incoming feed for distillation towers are often heat exchangers.[6][7]

Distillation set-ups typically use condensers to condense distillate vapors back into liquid.

Power plants that use steam-driven turbines commonly use heat exchangers to boil water into steam. Heat exchangers or similar units for producing steam from water are often called boilers or steam generators.

In the nuclear power plants called pressurized water reactors, special large heat exchangers pass heat from the primary (reactor plant) system to the secondary (steam plant) system, producing steam from water in the process. These are called steam generators. All fossil-fueled and nuclear power plants using steam-driven turbines have surface condensers to convert the exhaust steam from the turbines into condensate (water) for re-use.[8][9]

To conserve energy and cooling capacity in chemical and other plants, regenerative heat exchangers can transfer heat from a stream that must be cooled to another stream that must be heated, such as distillate cooling and reboiler feed pre-heating.

This term can also refer to heat exchangers that contain a material within their structure that has a change of phase. This is usually a solid to liquid phase due to the small volume difference between these states. This change of phase effectively acts as a buffer because it occurs at a constant temperature but still allows for the heat exchanger to accept additional heat. One example where this has been investigated is for use in high power aircraft electronics.

Heat exchangers functioning in multiphase flow regimes may be subject to the Ledinegg instability.

Direct contact

[edit]

Direct contact heat exchangers involve heat transfer between hot and cold streams of two phases in the absence of a separating wall.[10] Thus such heat exchangers can be classified as:

  • Gas – liquid
  • Immiscible liquid – liquid
  • Solid-liquid or solid – gas

Most direct contact heat exchangers fall under the Gas – Liquid category, where heat is transferred between a gas and liquid in the form of drops, films or sprays.[4]

Such types of heat exchangers are used predominantly in air conditioning, humidification, industrial hot water heating, water cooling and condensing plants.[11]

Phases[12] Continuous phase Driving force Change of phase Examples
Gas – Liquid Gas Gravity No Spray columns, packed columns
      Yes Cooling towers, falling droplet evaporators
    Forced No Spray coolers/quenchers
    Liquid flow Yes Spray condensers/evaporation, jet condensers
  Liquid Gravity No Bubble columns, perforated tray columns
      Yes Bubble column condensers
    Forced No Gas spargers
    Gas flow Yes Direct contact evaporators, submerged combustion

Microchannel

[edit]

Microchannel heat exchangers are multi-pass parallel flow heat exchangers consisting of three main elements: manifolds (inlet and outlet), multi-port tubes with the hydraulic diameters smaller than 1mm, and fins. All the elements usually brazed together using controllable atmosphere brazing process. Microchannel heat exchangers are characterized by high heat transfer ratio, low refrigerant charges, compact size, and lower airside pressure drops compared to finned tube heat exchangers.[citation needed] Microchannel heat exchangers are widely used in automotive industry as the car radiators, and as condenser, evaporator, and cooling/heating coils in HVAC industry.

Micro heat exchangers, Micro-scale heat exchangers, or microstructured heat exchangers are heat exchangers in which (at least one) fluid flows in lateral confinements with typical dimensions below 1 mm. The most typical such confinement are microchannels, which are channels with a hydraulic diameter below 1 mm. Microchannel heat exchangers can be made from metal or ceramics.[13] Microchannel heat exchangers can be used for many applications including:

  • high-performance aircraft gas turbine engines[14]
  • heat pumps[15]
  • Microprocessor and microchip cooling[16]
  • air conditioning[17]

HVAC and refrigeration air coils

[edit]

One of the widest uses of heat exchangers is for refrigeration and air conditioning. This class of heat exchangers is commonly called air coils, or just coils due to their often-serpentine internal tubing, or condensers in the case of refrigeration, and are typically of the finned tube type. Liquid-to-air, or air-to-liquid HVAC coils are typically of modified crossflow arrangement. In vehicles, heat coils are often called heater cores.

On the liquid side of these heat exchangers, the common fluids are water, a water-glycol solution, steam, or a refrigerant. For heating coils, hot water and steam are the most common, and this heated fluid is supplied by boilers, for example. For cooling coils, chilled water and refrigerant are most common. Chilled water is supplied from a chiller that is potentially located very far away, but refrigerant must come from a nearby condensing unit. When a refrigerant is used, the cooling coil is the evaporator, and the heating coil is the condenser in the vapor-compression refrigeration cycle. HVAC coils that use this direct-expansion of refrigerants are commonly called DX coils. Some DX coils are "microchannel" type.[5]

On the air side of HVAC coils a significant difference exists between those used for heating, and those for cooling. Due to psychrometrics, air that is cooled often has moisture condensing out of it, except with extremely dry air flows. Heating some air increases that airflow's capacity to hold water. So heating coils need not consider moisture condensation on their air-side, but cooling coils must be adequately designed and selected to handle their particular latent (moisture) as well as the sensible (cooling) loads. The water that is removed is called condensate.

For many climates, water or steam HVAC coils can be exposed to freezing conditions. Because water expands upon freezing, these somewhat expensive and difficult to replace thin-walled heat exchangers can easily be damaged or destroyed by just one freeze. As such, freeze protection of coils is a major concern of HVAC designers, installers, and operators.

The introduction of indentations placed within the heat exchange fins controlled condensation, allowing water molecules to remain in the cooled air.[18]

The heat exchangers in direct-combustion furnaces, typical in many residences, are not 'coils'. They are, instead, gas-to-air heat exchangers that are typically made of stamped steel sheet metal. The combustion products pass on one side of these heat exchangers, and air to heat on the other. A cracked heat exchanger is therefore a dangerous situation that requires immediate attention because combustion products may enter living space.

Helical-coil

[edit]
Helical-Coil Heat Exchanger sketch, which consists of a shell, core, and tubes (Scott S. Haraburda design)

Although double-pipe heat exchangers are the simplest to design, the better choice in the following cases would be the helical-coil heat exchanger (HCHE):

  • The main advantage of the HCHE, like that for the Spiral heat exchanger (SHE), is its highly efficient use of space, especially when it's limited and not enough straight pipe can be laid.[19]
  • Under conditions of low flowrates (or laminar flow), such that the typical shell-and-tube exchangers have low heat-transfer coefficients and becoming uneconomical.[19]
  • When there is low pressure in one of the fluids, usually from accumulated pressure drops in other process equipment.[19]
  • When one of the fluids has components in multiple phases (solids, liquids, and gases), which tends to create mechanical problems during operations, such as plugging of small-diameter tubes.[20] Cleaning of helical coils for these multiple-phase fluids can prove to be more difficult than its shell and tube counterpart; however the helical coil unit would require cleaning less often.

These have been used in the nuclear industry as a method for exchanging heat in a sodium system for large liquid metal fast breeder reactors since the early 1970s, using an HCHE device invented by Charles E. Boardman and John H. Germer.[21] There are several simple methods for designing HCHE for all types of manufacturing industries, such as using the Ramachandra K. Patil (et al.) method from India and the Scott S. Haraburda method from the United States.[19][20]

However, these are based upon assumptions of estimating inside heat transfer coefficient, predicting flow around the outside of the coil, and upon constant heat flux.[22]

Spiral

[edit]
Schematic drawing of a spiral heat exchanger

A modification to the perpendicular flow of the typical HCHE involves the replacement of shell with another coiled tube, allowing the two fluids to flow parallel to one another, and which requires the use of different design calculations.[23] These are the Spiral Heat Exchangers (SHE), which may refer to a helical (coiled) tube configuration, more generally, the term refers to a pair of flat surfaces that are coiled to form the two channels in a counter-flow arrangement. Each of the two channels has one long curved path. A pair of fluid ports are connected tangentially to the outer arms of the spiral, and axial ports are common, but optional.[24]

The main advantage of the SHE is its highly efficient use of space. This attribute is often leveraged and partially reallocated to gain other improvements in performance, according to well known tradeoffs in heat exchanger design. (A notable tradeoff is capital cost vs operating cost.) A compact SHE may be used to have a smaller footprint and thus lower all-around capital costs, or an oversized SHE may be used to have less pressure drop, less pumping energy, higher thermal efficiency, and lower energy costs.

Construction

[edit]

The distance between the sheets in the spiral channels is maintained by using spacer studs that were welded prior to rolling. Once the main spiral pack has been rolled, alternate top and bottom edges are welded and each end closed by a gasketed flat or conical cover bolted to the body. This ensures no mixing of the two fluids occurs. Any leakage is from the periphery cover to the atmosphere, or to a passage that contains the same fluid.[25]

Self cleaning

[edit]

Spiral heat exchangers are often used in the heating of fluids that contain solids and thus tend to foul the inside of the heat exchanger. The low pressure drop lets the SHE handle fouling more easily. The SHE uses a “self cleaning” mechanism, whereby fouled surfaces cause a localized increase in fluid velocity, thus increasing the drag (or fluid friction) on the fouled surface, thus helping to dislodge the blockage and keep the heat exchanger clean. "The internal walls that make up the heat transfer surface are often rather thick, which makes the SHE very robust, and able to last a long time in demanding environments."[citation needed] They are also easily cleaned, opening out like an oven where any buildup of foulant can be removed by pressure washing.

Self-cleaning water filters are used to keep the system clean and running without the need to shut down or replace cartridges and bags.

Flow arrangements

[edit]
A comparison between the operations and effects of a cocurrent and a countercurrent flow exchange system is depicted by the upper and lower diagrams respectively. In both it is assumed (and indicated) that red has a higher value (e.g. of temperature) than blue and that the property being transported in the channels therefore flows from red to blue. Channels are contiguous if effective exchange is to occur (i.e. there can be no gap between the channels).

There are three main types of flows in a spiral heat exchanger:

  • Counter-current Flow: Fluids flow in opposite directions. These are used for liquid-liquid, condensing and gas cooling applications. Units are usually mounted vertically when condensing vapour and mounted horizontally when handling high concentrations of solids.
  • Spiral Flow/Cross Flow: One fluid is in spiral flow and the other in a cross flow. Spiral flow passages are welded at each side for this type of spiral heat exchanger. This type of flow is suitable for handling low density gas, which passes through the cross flow, avoiding pressure loss. It can be used for liquid-liquid applications if one liquid has a considerably greater flow rate than the other.
  • Distributed Vapour/Spiral flow: This design is that of a condenser, and is usually mounted vertically. It is designed to cater for the sub-cooling of both condensate and non-condensables. The coolant moves in a spiral and leaves via the top. Hot gases that enter leave as condensate via the bottom outlet.

Applications

[edit]

The Spiral heat exchanger is good for applications such as pasteurization, digester heating, heat recovery, pre-heating (see: recuperator), and effluent cooling. For sludge treatment, SHEs are generally smaller than other types of heat exchangers.[citation needed] These are used to transfer the heat.

Selection

[edit]

Due to the many variables involved, selecting optimal heat exchangers is challenging. Hand calculations are possible, but many iterations are typically needed. As such, heat exchangers are most often selected via computer programs, either by system designers, who are typically engineers, or by equipment vendors.

To select an appropriate heat exchanger, the system designers (or equipment vendors) would firstly consider the design limitations for each heat exchanger type. Though cost is often the primary criterion, several other selection criteria are important:

  • High/low pressure limits
  • Thermal performance
  • Temperature ranges
  • Product mix (liquid/liquid, particulates or high-solids liquid)
  • Pressure drops across the exchanger
  • Fluid flow capacity
  • Cleanability, maintenance and repair
  • Materials required for construction
  • Ability and ease of future expansion
  • Material selection, such as copper, aluminium, carbon steel, stainless steel, nickel alloys, ceramic, polymer, and titanium.[26][27]

Small-diameter coil technologies are becoming more popular in modern air conditioning and refrigeration systems because they have better rates of heat transfer than conventional sized condenser and evaporator coils with round copper tubes and aluminum or copper fin that have been the standard in the HVAC industry. Small diameter coils can withstand the higher pressures required by the new generation of environmentally friendlier refrigerants. Two small diameter coil technologies are currently available for air conditioning and refrigeration products: copper microgroove[28] and brazed aluminum microchannel.[citation needed]

Choosing the right heat exchanger (HX) requires some knowledge of the different heat exchanger types, as well as the environment where the unit must operate. Typically in the manufacturing industry, several differing types of heat exchangers are used for just one process or system to derive the final product. For example, a kettle HX for pre-heating, a double pipe HX for the 'carrier' fluid and a plate and frame HX for final cooling. With sufficient knowledge of heat exchanger types and operating requirements, an appropriate selection can be made to optimise the process.[29]

Monitoring and maintenance

[edit]

Online monitoring of commercial heat exchangers is done by tracking the overall heat transfer coefficient. The overall heat transfer coefficient tends to decline over time due to fouling.

By periodically calculating the overall heat transfer coefficient from exchanger flow rates and temperatures, the owner of the heat exchanger can estimate when cleaning the heat exchanger is economically attractive.

Integrity inspection of plate and tubular heat exchanger can be tested in situ by the conductivity or helium gas methods. These methods confirm the integrity of the plates or tubes to prevent any cross contamination and the condition of the gaskets.

Mechanical integrity monitoring of heat exchanger tubes may be conducted through Nondestructive methods such as eddy current testing.

Fouling

[edit]
A heat exchanger in a steam power station contaminated with macrofouling

Fouling occurs when impurities deposit on the heat exchange surface. Deposition of these impurities can decrease heat transfer effectiveness significantly over time and are caused by:

  • Low wall shear stress
  • Low fluid velocities
  • High fluid velocities
  • Reaction product solid precipitation
  • Precipitation of dissolved impurities due to elevated wall temperatures

The rate of heat exchanger fouling is determined by the rate of particle deposition less re-entrainment/suppression. This model was originally proposed in 1959 by Kern and Seaton.

Crude Oil Exchanger Fouling. In commercial crude oil refining, crude oil is heated from 21 °C (70 °F) to 343 °C (649 °F) prior to entering the distillation column. A series of shell and tube heat exchangers typically exchange heat between crude oil and other oil streams to heat the crude to 260 °C (500 °F) prior to heating in a furnace. Fouling occurs on the crude side of these exchangers due to asphaltene insolubility. The nature of asphaltene solubility in crude oil was successfully modeled by Wiehe and Kennedy.[30] The precipitation of insoluble asphaltenes in crude preheat trains has been successfully modeled as a first order reaction by Ebert and Panchal[31] who expanded on the work of Kern and Seaton.

Cooling Water Fouling. Cooling water systems are susceptible to fouling. Cooling water typically has a high total dissolved solids content and suspended colloidal solids. Localized precipitation of dissolved solids occurs at the heat exchange surface due to wall temperatures higher than bulk fluid temperature. Low fluid velocities (less than 3 ft/s) allow suspended solids to settle on the heat exchange surface. Cooling water is typically on the tube side of a shell and tube exchanger because it's easy to clean. To prevent fouling, designers typically ensure that cooling water velocity is greater than 0.9 m/s and bulk fluid temperature is maintained less than 60 °C (140 °F). Other approaches to control fouling control combine the "blind" application of biocides and anti-scale chemicals with periodic lab testing.

Maintenance

[edit]

Plate and frame heat exchangers can be disassembled and cleaned periodically. Tubular heat exchangers can be cleaned by such methods as acid cleaning, sandblasting, high-pressure water jet, bullet cleaning, or drill rods.

In large-scale cooling water systems for heat exchangers, water treatment such as purification, addition of chemicals, and testing, is used to minimize fouling of the heat exchange equipment. Other water treatment is also used in steam systems for power plants, etc. to minimize fouling and corrosion of the heat exchange and other equipment.

A variety of companies have started using water borne oscillations technology to prevent biofouling. Without the use of chemicals, this type of technology has helped in providing a low-pressure drop in heat exchangers.

Design and manufacturing regulations

[edit]

The design and manufacturing of heat exchangers has numerous regulations, which vary according to the region in which they will be used.

Design and manufacturing codes include: ASME Boiler and Pressure Vessel Code (US); PD 5500 (UK); BS 1566 (UK);[32] EN 13445 (EU); CODAP (French); Pressure Equipment Safety Regulations 2016 (PER) (UK); Pressure Equipment Directive (EU); NORSOK (Norwegian); TEMA;[33] API 12; and API 560.[citation needed]

In nature

[edit]

Humans

[edit]

The human nasal passages serve as a heat exchanger, with cool air being inhaled and warm air being exhaled. Its effectiveness can be demonstrated by putting the hand in front of the face and exhaling, first through the nose and then through the mouth. Air exhaled through the nose is substantially cooler.[34][35] This effect can be enhanced with clothing, by, for example, wearing a scarf over the face while breathing in cold weather.

In species that have external testes (such as human), the artery to the testis is surrounded by a mesh of veins called the pampiniform plexus. This cools the blood heading to the testes, while reheating the returning blood.

Birds, fish, marine mammals

[edit]
Counter-current exchange conservation circuit

"Countercurrent" heat exchangers occur naturally in the circulatory systems of fish, whales and other marine mammals. Arteries to the skin carrying warm blood are intertwined with veins from the skin carrying cold blood, causing the warm arterial blood to exchange heat with the cold venous blood. This reduces the overall heat loss in cold water. Heat exchangers are also present in the tongues of baleen whales as large volumes of water flow through their mouths.[36][37] Wading birds use a similar system to limit heat losses from their body through their legs into the water.

Carotid rete

[edit]

Carotid rete is a counter-current heat exchanging organ in some ungulates. The blood ascending the carotid arteries on its way to the brain, flows via a network of vessels where heat is discharged to the veins of cooler blood descending from the nasal passages. The carotid rete allows Thomson's gazelle to maintain its brain almost 3 °C (5.4 °F) cooler than the rest of the body, and therefore aids in tolerating bursts in metabolic heat production such as associated with outrunning cheetahs (during which the body temperature exceeds the maximum temperature at which the brain could function).[38] Humans with other primates lack a carotid rete.[39]

In industry

[edit]

Heat exchangers are widely used in industry both for cooling and heating large scale industrial processes. The type and size of heat exchanger used can be tailored to suit a process depending on the type of fluid, its phase, temperature, density, viscosity, pressures, chemical composition and various other thermodynamic properties.

In many industrial processes there is waste of energy or a heat stream that is being exhausted, heat exchangers can be used to recover this heat and put it to use by heating a different stream in the process. This practice saves a lot of money in industry, as the heat supplied to other streams from the heat exchangers would otherwise come from an external source that is more expensive and more harmful to the environment.

Heat exchangers are used in many industries, including:

  • Waste water treatment
  • Refrigeration
  • Wine and beer making
  • Petroleum refining
  • Nuclear power

In waste water treatment, heat exchangers play a vital role in maintaining optimal temperatures within anaerobic digesters to promote the growth of microbes that remove pollutants. Common types of heat exchangers used in this application are the double pipe heat exchanger as well as the plate and frame heat exchanger.

In aircraft

[edit]

In commercial aircraft heat exchangers are used to take heat from the engine's oil system to heat cold fuel.[40] This improves fuel efficiency, as well as reduces the possibility of water entrapped in the fuel freezing in components.[41]

Current market and forecast

[edit]

Estimated at US$17.5 billion in 2021, the global demand of heat exchangers is expected to experience robust growth of about 5% annually over the next years. The market value is expected to reach US$27 billion by 2030. With an expanding desire for environmentally friendly options and increased development of offices, retail sectors, and public buildings, market expansion is due to grow.[42]

A model of a simple heat exchanger

[edit]

A simple heat exchange [43][44] might be thought of as two straight pipes with fluid flow, which are thermally connected. Let the pipes be of equal length L, carrying fluids with heat capacity (energy per unit mass per unit change in temperature) and let the mass flow rate of the fluids through the pipes, both in the same direction, be (mass per unit time), where the subscript i applies to pipe 1 or pipe 2.

Temperature profiles for the pipes are and where x is the distance along the pipe. Assume a steady state, so that the temperature profiles are not functions of time. Assume also that the only transfer of heat from a small volume of fluid in one pipe is to the fluid element in the other pipe at the same position, i.e., there is no transfer of heat along a pipe due to temperature differences in that pipe. By Newton's law of cooling the rate of change in energy of a small volume of fluid is proportional to the difference in temperatures between it and the corresponding element in the other pipe:

( this is for parallel flow in the same direction and opposite temperature gradients, but for counter-flow heat exchange countercurrent exchange the sign is opposite in the second equation in front of ), where is the thermal energy per unit length and γ is the thermal connection constant per unit length between the two pipes. This change in internal energy results in a change in the temperature of the fluid element. The time rate of change for the fluid element being carried along by the flow is:

where is the "thermal mass flow rate". The differential equations governing the heat exchanger may now be written as:

Since the system is in a steady state, there are no partial derivatives of temperature with respect to time, and since there is no heat transfer along the pipe, there are no second derivatives in x as is found in the heat equation. These two coupled first-order differential equations may be solved to yield:

where , ,

(this is for parallel-flow, but for counter-flow the sign in front of is negative, so that if , for the same "thermal mass flow rate" in both opposite directions, the gradient of temperature is constant and the temperatures linear in position x with a constant difference along the exchanger, explaining why the counter current design countercurrent exchange is the most efficient )

and A and B are two as yet undetermined constants of integration. Let and be the temperatures at x=0 and let and be the temperatures at the end of the pipe at x=L. Define the average temperatures in each pipe as:

Using the solutions above, these temperatures are:

        

Choosing any two of the temperatures above eliminates the constants of integration, letting us find the other four temperatures. We find the total energy transferred by integrating the expressions for the time rate of change of internal energy per unit length:

By the conservation of energy, the sum of the two energies is zero. The quantity is known as the Log mean temperature difference, and is a measure of the effectiveness of the heat exchanger in transferring heat energy.

See also

[edit]
  • Architectural engineering
  • Chemical engineering
  • Cooling tower
  • Copper in heat exchangers
  • Heat pipe
  • Heat pump
  • Heat recovery ventilation
  • Jacketed vessel
  • Log mean temperature difference (LMTD)
  • Marine heat exchangers
  • Mechanical engineering
  • Micro heat exchanger
  • Moving bed heat exchanger
  • Packed bed and in particular Packed columns
  • Pumpable ice technology
  • Reboiler
  • Recuperator, or cross plate heat exchanger
  • Regenerator
  • Run around coil
  • Steam generator (nuclear power)
  • Surface condenser
  • Toroidal expansion joint
  • Thermosiphon
  • Thermal wheel, or rotary heat exchanger (including enthalpy wheel and desiccant wheel)
  • Tube tool
  • Waste heat

References

[edit]
  1. ^ Al-Sammarraie, Ahmed T.; Vafai, Kambiz (2017). "Heat transfer augmentation through convergence angles in a pipe". Numerical Heat Transfer, Part A: Applications. 72 (3): 197–214. Bibcode:2017NHTA...72..197A. doi:10.1080/10407782.2017.1372670. S2CID 125509773.
  2. ^ Sadik Kakaç; Hongtan Liu (2002). Heat Exchangers: Selection, Rating and Thermal Design (2nd ed.). CRC Press. ISBN 978-0-8493-0902-1.
  3. ^ Farzaneh, Mahsa; Forouzandeh, Azadeh; Al-Sammarraie, Ahmed T.; Salimpour, Mohammad Reza (2019). "Constructal Design of Circular Multilayer Microchannel Heat Sinks". Journal of Thermal Science and Engineering Applications. 11. doi:10.1115/1.4041196. S2CID 126162513.
  4. ^ a b Saunders, E. A. (1988). Heat Exchanges: Selection, Design and Construction. New York: Longman Scientific and Technical.
  5. ^ a b "MICROCHANNEL TECHNOLOGY" (PDF). Archived from the original (PDF) on June 4, 2013.
  6. ^ Kister, Henry Z. (1992). Distillation Design (1st ed.). McGraw-Hill. ISBN 978-0-07-034909-4.
  7. ^ Perry, Robert H.; Green, Don W. (1984). Perry's Chemical Engineers' Handbook (6th ed.). McGraw-Hill. ISBN 978-0-07-049479-4.
  8. ^ Air Pollution Control Orientation Course from website of the Air Pollution Training Institute
  9. ^ Energy savings in steam systems Archived 2007-09-27 at the Wayback Machine Figure 3a, Layout of surface condenser (scroll to page 11 of 34 PDF pages)
  10. ^ Coulson, J. & Richardson, J. (1983), Chemical Engineering – Design (SI Units), Volume 6, Pergamon Press, Oxford.
  11. ^ Hewitt G, Shires G, Bott T (1994), Process Heat Transfer, CRC Press Inc, Florida.
  12. ^ Table: Various Types of Gas – Liquid Direct Contact Heat Exchangers (Hewitt G, Shires G & Bott T, 1994)
  13. ^ Kee Robert J.; et al. (2011). "The design, fabrication, and evaluation of a ceramic counter-flow microchannel heat exchanger". Applied Thermal Engineering. 31 (11): 2004–2012. doi:10.1016/j.applthermaleng.2011.03.009.
  14. ^ Northcutt B.; Mudawar I. (2012). "Enhanced design of cross-flow microchannel heat exchanger module for high-performance aircraft gas turbine engines". Journal of Heat Transfer. 134 (6): 061801. doi:10.1115/1.4006037.
  15. ^ Moallem E.; Padhmanabhan S.; Cremaschi L.; Fisher D. E. (2012). "Experimental investigation of the surface temperature and water retention effects on the frosting performance of a compact microchannel heat exchanger for heat pump systems". International Journal of Refrigeration. 35 (1): 171–186. doi:10.1016/j.ijrefrig.2011.08.010.
  16. ^ Sarvar-Ardeh, S., Rafee, R., Rashidi, S. (2021). Hybrid nanofluids with temperature-dependent properties for use in double-layered microchannel heat sink; hydrothermal investigation. Journal of the Taiwan Institute of Chemical Engineers. cite journal https://doi.org/10.1016/j.jtice.2021.05.007
  17. ^ Xu, B., Shi, J., Wang, Y., Chen, J., Li, F., & Li, D. (2014). Experimental Study of Fouling Performance of Air Conditioning System with Microchannel Heat Exchanger.
  18. ^ Patent 2,046,968 John C Raisley[dead link] issued July 7, 1936; filed Jan. 8, 1934 [1]
  19. ^ a b c d Patil, Ramachandra K.; Shende, B.W.; Ghosh, Prasanfa K. (13 December 1982). "Designing a helical-coil heat exchanger". Chemical Engineering. 92 (24): 85–88. Retrieved 14 July 2015.
  20. ^ a b Haraburda, Scott S. (July 1995). "Three-Phase Flow? Consider Helical-Coil Heat Exchanger". Chemical Engineering. 102 (7): 149–151. Retrieved 14 July 2015.
  21. ^ US 3805890, Boardman, Charles E. & Germer, John H., "Helical Coil Heat Exchanger", issued 1974 
  22. ^ Rennie, Timothy J. (2004). Numerical And Experimental Studies Of A Doublepipe Helical Heat Exchanger (PDF) (Ph.D.). Montreal: McGill University. pp. 3–4. Retrieved 14 July 2015.
  23. ^ Rennie, Timothy J.; Raghavan, Vijaya G.S. (September 2005). "Experimental studies of a double-pipe helical heat exchanger". Experimental Thermal and Fluid Science. 29 (8): 919–924. doi:10.1016/j.expthermflusci.2005.02.001.
  24. ^ "Cooling Text". Archived from the original on 2009-02-09. Retrieved 2019-09-09.
  25. ^ E.A.D.Saunders (1988). Heat Exchangers:Selection Design And Construction Longman Scientific and Technical ISBN 0-582-49491-5
  26. ^ Hartman, A. D.; Gerdemann, S. J.; Hansen, J. S. (1998-09-01). "Producing lower-cost titanium for automotive applications". JOM. 50 (9): 16–19. Bibcode:1998JOM....50i..16H. doi:10.1007/s11837-998-0408-1. ISSN 1543-1851. S2CID 92992840.
  27. ^ Nyamekye, Patricia; Rahimpour Golroudbary, Saeed; Piili, Heidi; Luukka, Pasi; Kraslawski, Andrzej (2023-05-01). "Impact of additive manufacturing on titanium supply chain: Case of titanium alloys in automotive and aerospace industries". Advances in Industrial and Manufacturing Engineering. 6: 100112. doi:10.1016/j.aime.2023.100112. ISSN 2666-9129. S2CID 255534598. Archived from the original on Feb 4, 2024.
  28. ^ "Small Tube Copper Is Economical and Eco-Friendly | The MicroGroove Advantage". microgroove.net. Archived from the original on Dec 8, 2023.cite web: CS1 maint: unfit URL (link)
  29. ^
    • White, F.M. 'Heat and Mass Transfer' © 1988 Addison-Wesley Publishing Co. pp. 602–604
    • Rafferty, Kevin D. "Heat Exchangers". Gene Culver Geo-Heat Center. Geothermal Networks. Archived from the original on 2008-03-29. Last accessed 17/3/08.
    • "Process Heating". process-heating.com. BNP Media. Archived from the original on Mar 16, 2008. Last accessed 17/3/08.
  30. ^ Wiehe, Irwin A.; Kennedy, Raymond J. (1 January 2000). "The Oil Compatibility Model and Crude Oil Incompatibility". Energy & Fuels. 14 (1): 56–59. doi:10.1021/ef990133+.
  31. ^ Panchal C;B; and Ebert W., Analysis of Exxon Crude-Oil-Slip-Stream Coking Data, Proc of Fouling Mitigation of Industrial Heat-Exchanger Equipment, San Luis Obispo, California, USA, p 451, June 1995
  32. ^ Domestic heating compliance guide : compliance with approved documents L1A: New dwellings and L1B: Existing dwellings : the Building Regulations 2000 as amended 2006. London: TSO. 2006. ISBN 978-0-11-703645-1. OCLC 500282471.
  33. ^ Epstein, Norman (2014), "Design and construction codes", HEDH Multimedia, Begellhouse, doi:10.1615/hedhme.a.000413, ISBN 978-1-56700-423-6, retrieved 2022-04-12
  34. ^ Heat Loss from the Respiratory Tract in Cold, Defense Technical Information Center, April 1955
  35. ^ Randall, David J.; Warren W. Burggren; Kathleen French; Roger Eckert (2002). Eckert animal physiology: mechanisms and adaptations. Macmillan. p. 587. ISBN 978-0-7167-3863-3.
  36. ^ "Natural History Museum: Research & Collections: History". Archived from the original on 2009-06-14. Retrieved 2019-09-09.
  37. ^ Heyning and Mead; Mead, JG (November 1997). "Thermoregulation in the Mouths of Feeding Gray Whales". Science. 278 (5340): 1138–1140. Bibcode:1997Sci...278.1138H. doi:10.1126/science.278.5340.1138. PMID 9353198.
  38. ^ "Carotid rete cools brain : Thomson's Gazelle".
  39. ^ Bruner, Emiliano; Mantini, Simone; Musso, Fabio; De La Cuétara, José Manuel; Ripani, Maurizio; Sherkat, Shahram (2010-11-30). "The evolution of the meningeal vascular system in the human genus: From brain shape to thermoregulation". American Journal of Human Biology. 23 (1): 35–43. doi:10.1002/ajhb.21123. ISSN 1042-0533. PMID 21120884.
  40. ^ "United States Patent 4498525, Fuel/oil heat exchange system for an engine". United States Patent and Trademark Office. Retrieved 3 February 2009.
  41. ^ Croft, John. "Boeing links Heathrow, Atlanta Trent 895 engine rollbacks". FlightGlobal.com. Retrieved 3 February 2009.
  42. ^ Research, Straits (2022-07-06). "Heat Exchanger Market Size is projected to reach USD 27 Billion by 2030, growing at a CAGR of 5%: Straits Research". GlobeNewswire News Room (Press release). Retrieved 2022-07-15.
  43. ^ Kay J M & Nedderman R M (1985) Fluid Mechanics and Transfer Processes, Cambridge University Press
  44. ^ "MIT web course on Heat Exchangers". [MIT].
  • Coulson, J. and Richardson, J (1999). Chemical Engineering- Fluid Flow. Heat Transfer and Mass Transfer- Volume 1; Reed Educational & Professional Publishing LTD
  • Dogan Eryener (2005), 'Thermoeconomic optimization of baffle spacing for shell and tube heat exchangers', Energy Conservation and Management, Volume 47, Issue 11–12, Pages 1478–1489.
  • G.F.Hewitt, G.L.Shires, T.R.Bott (1994) Process Heat Transfer, CRC Press, Inc, United States Of America.
[edit]
  • Shell and Tube Heat Exchanger Design Software for Educational Applications (PDF)
  • EU Pressure Equipment Guideline
  • A Thermal Management Concept For More Electric Aircraft Power System Application (PDF)

 

Driving Directions in Arapahoe County


Driving Directions From Littleton to Royal Supply South
Driving Directions From William Richheimer, MD to Royal Supply South
Driving Directions From King Soopers to Royal Supply South
Driving Directions From Costco Vision Center to Royal Supply South
Driving Directions From VRCC Veterinary Specialty and Emergency Hospital to Royal Supply South
Driving Directions From Arapahoe County Assessor to Royal Supply South
Driving Directions From Plains Conservation Center (Visitor Center) to Royal Supply South
Driving Directions From Morrison Nature Center to Royal Supply South
Driving Directions From Cherry Creek State Park to Royal Supply South
Driving Directions From Molly Brown House Museum to Royal Supply South
Driving Directions From Aurora Reservoir to Royal Supply South
Driving Directions From Molly Brown House Museum to Royal Supply South

Reviews for Royal Supply South


View GBP

Frequently Asked Questions

To locate existing plumbing and gas lines, you can consult your mobile homes building plans if available, use a stud finder with an AC wire warning feature, or hire a professional to conduct an inspection. This ensures accurate mapping and prevents accidental damage during installation.
When planning the placement, ensure there is sufficient clearance from plumbing and gas lines to prevent interference and allow for maintenance access. Avoid placing heavy components directly above these utilities to reduce stress on them.
Yes, local building codes often specify minimum clearance requirements between HVAC systems and utility lines. Consult local regulations or hire a licensed contractor familiar with these codes to ensure compliance and safety.
Plan duct routes carefully by identifying all piping beforehand, using flexible ducts where necessary, and securing them properly. Avoid cutting into structural elements that may support pipes. Its advisable to work with professionals who have experience with mobile home installations.